基础IO(2)
基础IO(2)
理解“⼀切皆⽂件”
⾸先,在windows中是⽂件的东西,它们在linux中也是⽂件;其次⼀些在windows中不是⽂件的东西,⽐如进程、磁盘、显⽰器、键盘这样硬件设备也被抽象成了⽂件,你可以使⽤访问⽂件的⽅法访问它们获得信息;甚⾄管道,也是⽂件;将来我们要学习⽹络编程中的socket(套接字)这样的东西,使⽤的接⼝跟⽂件接⼝也是⼀致的。
这样做最明显的好处是,开发者仅需要使⽤⼀套 API 和开发⼯具,即可调取 Linux 系统中绝⼤部分的资源。举个简单的例⼦,Linux 中⼏乎所有读(读⽂件,读系统状态,读PIPE)的操作都可以⽤read 函数来进⾏;⼏乎所有更改(更改⽂件,更改系统参数,写 PIPE)的操作都可以⽤ write 函数来进⾏。
之前我们讲过,当打开⼀个⽂件时,操作系统为了管理所打开的⽂件,都会为这个⽂件创建⼀个file结构体,该结构体定义在 /usr/src/kernels/3.10.0-1160.71.1.el7.x86_64/include/linux/fs.h 下,以下展⽰了该结构部分我们关系的内容:
struct file {
...
struct inode *f_inode; /* cached value */
const struct file_operations *f_op;
...
atomic_long_t f_count; // 表⽰打开⽂件的引⽤计数,如果有多个⽂件指针指向
它,就会增加f_count的值。
unsigned int f_flags; // 表⽰打开⽂件的权限
fmode_t f_mode; // 设置对⽂件的访问模式,例如:只读,只写等。所有
的标志在头⽂件<fcntl.h> 中定义
loff_t f_pos; // 表⽰当前读写⽂件的位置
...
} __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */
值得关注的是 struct file 中的 f_op 指针指向了⼀个 file_operations 结构体,这个结构体中的成员除了struct module* owner 其余都是函数指针。该结构和 struct file 都在fs.h下。
struct file_operations {
struct module *owner;
//指向拥有该模块的指针;
loff_t (*llseek) (struct file *, loff_t, int);
//llseek ⽅法⽤作改变⽂件中的当前读/写位置, 并且新位置作为(正的)返回值.
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
//⽤来从设备中获取数据. 在这个位置的⼀个空指针导致 read 系统调⽤以 -
EINVAL("Invalid argument") 失败. ⼀个⾮负返回值代表了成功读取的字节数( 返回值是⼀个
"signed size" 类型, 常常是⽬标平台本地的整数类型).
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
//发送数据给设备. 如果 NULL, -EINVAL 返回给调⽤ write 系统调⽤的程序. 如果⾮负, 返
回值代表成功写的字节数.
ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long,
loff_t);
//初始化⼀个异步读 -- 可能在函数返回前不结束的读操作.
ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long,
loff_t);
//初始化设备上的⼀个异步写.
int (*readdir) (struct file *, void *, filldir_t);
//对于设备⽂件这个成员应当为 NULL; 它⽤来读取⽬录, 并且仅对**⽂件系统**有⽤.
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
//mmap ⽤来请求将设备内存映射到进程的地址空间. 如果这个⽅法是 NULL, mmap 系统调⽤返
回 -ENODEV.
int (*open) (struct inode *, struct file *);
//打开⼀个⽂件
int (*flush) (struct file *, fl_owner_t id);
//flush 操作在进程关闭它的设备⽂件描述符的拷⻉时调⽤;
int (*release) (struct inode *, struct file *);
//在⽂件结构被释放时引⽤这个操作. 如同 open, release 可以为 NULL.
int (*fsync) (struct file *, struct dentry *, int datasync);
//⽤⼾调⽤来刷新任何挂着的数据.
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
//lock ⽅法⽤来实现⽂件加锁; 加锁对常规⽂件是必不可少的特性, 但是设备驱动⼏乎从不实现
它.
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *,
int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned
long, unsigned long, unsigned long);
int (*check_flags)(int);
int (*flock) (struct file *, int, struct file_lock *);
ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *,
size_t, unsigned int);
ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *,
size_t, unsigned int);
int (*setlease)(struct file *, long, struct file_lock **);
};
file_operation 就是把系统调⽤和驱动程序关联起来的关键数据结构,这个结构的每⼀个成员都对应着⼀个系统调⽤。读取 file_operation 中相应的函数指针,接着把控制权转交给函数,从⽽完成了Linux设备驱动程序的⼯作。
介绍完相关代码,⼀张图总结:
上图中的外设,每个设备都可以有⾃⼰的read、write,但⼀定是对应着不同的操作⽅法!!但通过struct file 下 file_operation 中的各种函数回调,让我们开发者只⽤file便可调取 Linux 系统中绝⼤部分的资源!!这便是“linux下⼀切皆⽂件”的核⼼理解。
缓冲区
什么是缓冲区
缓冲区是内存空间的⼀部分。也就是说,在内存空间中预留了⼀定的存储空间,这些存储空间⽤来缓冲输⼊或输出的数据,这部分预留的空间就叫做缓冲区。缓冲区根据其对应的是输⼊设备还是输出设备,分为输⼊缓冲区和输出缓冲区。
为什么要引⼊缓冲区机制
读写⽂件时,如果不会开辟对⽂件操作的缓冲区,直接通过系统调⽤对磁盘进⾏操作(读、写等),那么每次对⽂件进⾏⼀次读写操作时,都需要使⽤读写系统调⽤来处理此操作,即需要执⾏⼀次系统调⽤,执⾏⼀次系统调⽤将涉及到CPU状态的切换,即从⽤⼾空间切换到内核空间,实现进程上下⽂的切换,这将损耗⼀定的CPU时间,频繁的磁盘访问对程序的执⾏效率造成很⼤的影响。
为了减少使⽤系统调⽤的次数,提⾼效率,我们就可以采⽤缓冲机制。⽐如我们从磁盘⾥取信息,可以在磁盘⽂件进⾏操作时,可以⼀次从⽂件中读出⼤量的数据到缓冲区中,以后对这部分的访问就不需要再使⽤系统调⽤了,等缓冲区的数据取完后再去磁盘中读取,这样就可以减少磁盘的读写次数,再加上计算机对缓冲区的操作⼤ 快于对磁盘的操作,故应⽤缓冲区可⼤ 提⾼计算机的运⾏速度。
⼜⽐如,我们使⽤打印机打印⽂档,由于打印机的打印速度相对较慢,我们先把⽂档输出到打印机相应的缓冲区,打印机再⾃⾏逐步打印,这时我们的CPU可以处理别的事情。可以看出,缓冲区就是⼀块内存区,它⽤在输⼊输出设备和CPU之间,⽤来缓存数据。它使得低速的输⼊输出设备和⾼速的CPU能够协调⼯作,避免低速的输⼊输出设备占⽤CPU,解放出CPU,使其能够⾼效率⼯作。
缓冲类型
标准I/O提供了3种类型的缓冲区。
• 全缓冲区:这种缓冲⽅式要求填满整个缓冲区后才进⾏I/O系统调⽤操作。对于磁盘⽂件的操作通常使⽤全缓冲的⽅式访问。
• ⾏缓冲区:在⾏缓冲情况下,当在输⼊和输出中遇到换⾏符时,标准I/O库函数将会执⾏系统调⽤操作。当所操作的流涉及⼀个终端时(例如标准输⼊和标准输出),使⽤⾏缓冲⽅式。因为标准I/O库每⾏的缓冲区⻓度是固定的,所以只要填满了缓冲区,即使还没有遇到换⾏符,也会执⾏I/O系统调⽤操作,默认⾏缓冲区的⼤⼩为1024。
• ⽆缓冲区:⽆缓冲区是指标准I/O库不对字符进⾏缓存,直接调⽤系统调⽤。标准出错流stderr通常是不带缓冲区的,这使得出错信息能够尽快地显⽰出来。
除了上述列举的默认刷新⽅式,下列特殊情况也会引发缓冲区的刷新:
-
缓冲区满时;
-
执⾏flush语句;
⽰例如下:
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
int main() {
close(1);
int fd = open("log.txt", O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (fd < 0) {
perror("open");
return 0;
}
printf("hello world: %d\n", fd);
close(fd);
return 0;
}
我们本来想使⽤重定向思维,让本应该打印在显⽰器上的内容写到“log.txt”⽂件中,但我们发现,程序运⾏结束后,⽂件中并没有被写⼊内容:
[hyb@VM-8-12-centos buffer]$ ./myfile
[hyb@VM-8-12-centos buffer]$ ls
log.txt makefile myfile myfile.c
[hyb@VM-8-12-centos buffer]$ cat log.txt
[hyb@VM-8-12-centos buffer]$
这是由于我们将1号描述符重定向到磁盘⽂件后,缓冲区的刷新⽅式成为了全缓冲。⽽我们写⼊的内容并没有填满整个缓冲区,导致并不会将缓冲区的内容刷新到磁盘⽂件中。怎么办呢?可以使⽤fflush强制刷新下缓冲区。
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
int main() {
close(1);
int fd = open("log.txt", O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (fd < 0) {
perror("open");
return 0;
}
printf("hello world: %d\n", fd);
fflush(stdout);
close(fd);
return 0;
}
还有⼀种解决⽅法,刚好可以验证⼀下stderr是不带缓冲区的,代码如下:
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
int main() {
close(2);
int fd = open("log.txt", O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (fd < 0) {
perror("open");
return 0;
}
perror("hello world");
close(fd);
return 0;
}
这种⽅式便可以将2号⽂件描述符重定向⾄⽂件,由于stderr没有缓冲区,“hello world”不⽤fflush就可以写⼊⽂件:
[hyb@VM-8-12-centos buffer]$ ./myfile
[hyb@VM-8-12-centos buffer]$ cat log.txt
hello world: Success
FILE
• 因为IO相关函数与系统调⽤接⼝对应,并且库函数封装系统调⽤,所以本质上,访问⽂件都是通过fd访问的。
• 所以C库当中的FILE结构体内部,必定封装了fd
#include <stdio.h>
#include <string.h>
int main()
{
const char *msg0="hello printf\n";
const char *msg1="hello fwrite\n";
const char *msg2="hello write\n";
printf("%s", msg0);
fwrite(msg1, strlen(msg0), 1, stdout);
write(1, msg2, strlen(msg2));
fork();
return 0;
}
运⾏出结果:
hello printf
hello fwrite
hello write
但如果对进程实现输出重定向呢? ./hello > file , 我们发现结果变成了:
hello write
hello printf
hello fwrite
hello printf
hello fwrite
我们发现 printf 和 fwrite (库函数)都输出了2次,⽽ write 只输出了⼀次(系统调⽤)。为什么呢?肯定和fork有关!
• ⼀般C库函数写⼊⽂件时是全缓冲的,⽽写⼊显⽰器是⾏缓冲。
• printf fwrite 库函数+会⾃带缓冲区(进度条例⼦就可以说明),当发⽣重定向到普通⽂件时,数据的缓冲⽅式由⾏缓冲变成了全缓冲。
• ⽽我们放在缓冲区中的数据,就不会被⽴即刷新,甚⾄fork之后
• 但是进程退出之后,会统⼀刷新,写⼊⽂件当中。
• 但是fork的时候,⽗⼦数据会发⽣写时拷⻉,所以当你⽗进程准备刷新的时候,⼦进程也就有了同样的⼀份数据,随即产⽣两份数据。
• write 没有变化,说明没有所谓的缓冲。
综上: printf fwrite 库函数会⾃带缓冲区,⽽ write 系统调⽤没有带缓冲区。另外,我们这⾥所说的缓冲区,都是⽤⼾级缓冲区。其实为了提升整机性能,OS也会提供相关内核级缓冲区,不过不再我们讨论范围之内。
那这个缓冲区谁提供呢? printf fwrite 是库函数, write 是系统调⽤,库函数在系统调⽤的“上层”, 是对系统调⽤的“封装”,但是 write 没有缓冲区,⽽ printf fwrite 有,⾜以说明,该缓冲区是⼆次加上的,⼜因为是C,所以由C标准库提供。
简单设计⼀下libc库
my_stdio.h
$ cat my_stdio.h
#pragma once
#define SIZE 1024
#define FLUSH_NONE 0
#define FLUSH_LINE 1
#define FLUSH_FULL 2
struct IO_FILE
{
int flag; // 刷新⽅式
int fileno; // ⽂件描述符
char outbuffer[SIZE];
int cap;
int size;
// TODO
};
typedef struct IO_FILE mFILE;
mFILE *mfopen(const char *filename, const char *mode);
int mfwrite(const void *ptr, int num, mFILE *stream);
void mfflush(mFILE *stream);
void mfclose(mFILE *stream);
my_stdio.c
$ cat my_stdio.c
#include "my_stdio.h"
#include <string.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
mFILE *mfopen(const char *filename, const char *mode)
{
int fd = -1;
if(strcmp(mode, "r") == 0)
{
fd = open(filename, O_RDONLY);
}
else if(strcmp(mode, "w")== 0)
{
fd = open(filename, O_CREAT|O_WRONLY|O_TRUNC, 0666);
}
else if(strcmp(mode, "a") == 0)
{
fd = open(filename, O_CREAT|O_WRONLY|O_APPEND, 0666);
}
if(fd < 0) return NULL;
mFILE *mf = (mFILE*)malloc(sizeof(mFILE));
if(!mf)
{
close(fd);
return NULL;
}
mf->fileno = fd;
mf->flag = FLUSH_LINE;
mf->size = 0;
mf->cap = SIZE;
return mf;
}
void mfflush(mFILE *stream)
{
if(stream->size > 0)
{
// 写到内核⽂件的⽂件缓冲区中!
write(stream->fileno, stream->outbuffer, stream->size);
// 刷新到外设
fsync(stream->fileno);
stream->size = 0;
}
}
int mfwrite(const void *ptr, int num, mFILE *stream)
{
// 1. 拷⻉
memcpy(stream->outbuffer+stream->size, ptr, num);
stream->size += num;
// 2. 检测是否要刷新
if(stream->flag == FLUSH_LINE && stream->size > 0 && stream-
>outbuffer[stream->size-1]== '\n')
{
mfflush(stream);
}
return num;
}
void mfclose(mFILE *stream)
{
if(stream->size > 0)
{
mfflush(stream);
}
close(stream->fileno);
}
main.c
$ cat main.c
#include "my_stdio.h"
#include <stdio.h>
#include <string.h>
#include <unistd.h>
int main()
{
mFILE *fp = mfopen("./log.txt", "a");
if(fp == NULL)
{
return 1;
}
int cnt = 10;
while(cnt)
{
printf("write %d\n", cnt);
char buffer[64];
snprintf(buffer, sizeof(buffer),"hello message, number is : %d", cnt);
cnt--;
mfwrite(buffer, strlen(buffer), fp);
mfflush(fp);
sleep(1);
}
mfclose(fp);
}
#include <stdio.h>
#include <string.h>
#include <unistd.h>
int main()
{
mFILE *fp = mfopen(“./log.txt”, “a”);
if(fp == NULL)
{
return 1;
}
int cnt = 10;
while(cnt)
{
printf(“write %d\n”, cnt);
char buffer[64];
snprintf(buffer, sizeof(buffer),“hello message, number is : %d”, cnt);
cnt–;
mfwrite(buffer, strlen(buffer), fp);
mfflush(fp);
sleep(1);
}
mfclose(fp);
}