TensorFlow 与 PyTorch 的直观区别
背景
TensorFlow 与 PyTorch 都是比较流行的深度学习框架。tf 由谷歌在 2015 年发布,而 PyTorch 则是 Facecbook AI 研究团队 2016 年在原来 Torch 的基础上发布的。
tf 采用的是静态计算图。这意味着在执行任何计算之前,你需要先定义好整个计算图,之后再执行。这种方式适合大规模生产环境,可以优化计算图以提高效率。tf 的早期版本比较复杂,但在集成 Keras 库之后相当容易上手。
PyTorch 的设计目标是提供一个易于使用、灵活且高效的框架,所以采用的是动态图,特别适合研究人员和开发人员进行快速实验和原型设计。它强调灵活性和易用性,采用了动态图机制,使得代码更接近于 Python 原生风格,便于调试和修改。PyTorch 使用更加像原来的 Python 代码。
总体来说,TensorFlow 更加容易上手,PyTorch 更加灵活且需要自己操作,例如 tf 提供了训练的方法,而 PyTorch 则需要手动训练:
# TensorFlow
model.fit(train_images, train_labels, epochs=5, batch_size=128)
而 PyTorch 需要先手动将数据分批,然后自己编写训练和测试函数,函数详细内容后面会写:
# PyTorch
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Done!")
示例
MNIST 数据集
对于两者的示例,仍然使用 MNIST 手写数字集来做演示。MNIST 是 28 * 28 大小的单通道(黑白)手写数字图片,每个像素亮度值为 0 ~ 255。
首先加载数据集:
# TensorFlow
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
PyTorch 除了加载数据,还需要定义 DataLoader,因为其提供的框架更加底层,需要自己定义加载器,包括数据打包,转换等更加灵活的功能。
# PyTorch
to_tensor = transforms.Compose([transforms.ToTensor()])
training_data = datasets.MNIST(root="data", train=True, download=True, transform=to_tensor)
test_data = datasets.MNIST(root="data", train=False, download=True, transform=to_tensor)
train_dataloader = DataLoader(training_data, batch_size=128, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=128, shuffle=True)
定义神经网络
TensorFlow 集成了 Keras,这里可以看见对神经网络的定义非常简洁明了:
# TensorFlow
model = keras.Sequential([
layers.Flatten(input_shape=(28, 28)), # Flatten the input image to a vector of size 784
layers.Dense(512, activation="relu"),
layers.Dense(10, activation="softmax")
])
在 PyTorch 中,更倾向于将神经网络打包成一个类,这个类由框架提供的网络模型继承。
# PyTorch
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(in_features=28 * 28, out_features=512)
# Output layer with 10 neurous for classification
self.fc2 = nn.Linear(in_features=512, out_features=10)
def forward(self, x):
x = self.flatten(x) # Flatten the input tensor
x = nn.functional.relu(self.fc1(x)) # ReLU activation after first layer
x = self.fc2(x)
return x
print(model)
PyTorch 可以检查神经网络模型
NeuralNetwork(
(flatten): Flatten(start_dim=1, end_dim=-1)
(fc1): Linear(in_features=784, out_features=512, bias=True)
(fc2): Linear(in_features=512, out_features=10, bias=True)
)
训练
TensorFlow 在网络模型定义完成后,指定损失函数和优化器,来使模型训练让参数收敛。
model.compile(optimizer="rmsprop",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
model.fit(train_images, train_labels, epochs=5, batch_size=128)
Epoch 1/5
469/469 [==============================] - 3s 5ms/step - loss: 5.4884 - accuracy: 0.8992
Epoch 2/5
469/469 [==============================] - 2s 4ms/step - loss: 0.6828 - accuracy: 0.9538
Epoch 3/5
469/469 [==============================] - 2s 4ms/step - loss: 0.4634 - accuracy: 0.9662
Epoch 4/5
469/469 [==============================] - 2s 4ms/step - loss: 0.3742 - accuracy: 0.9730
Epoch 5/5
469/469 [==============================] - 2s 4ms/step - loss: 0.2930 - accuracy: 0.9774
而在 PyTorch 中则更加复杂,需要自己定义训练函数和测试函数,并不断训练,框架只提供了一些基础的训练所需函数:
# Define loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.RMSprop(model.parameters(), lr=0.001)
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
if batch % 100 == 0:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {100*(correct):>0.1f}%, Avg loss: {test_loss:>8f}\n")
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Done!")
Epoch 1
-------------------------------
loss: 2.319496 [ 128/60000]
loss: 0.443893 [12928/60000]
loss: 0.253097 [25728/60000]
loss: 0.106967 [38528/60000]
loss: 0.208099 [51328/60000]
Test Error:
Accuracy: 95.9%, Avg loss: 0.136413
Epoch 2
-------------------------------
loss: 0.102781 [ 128/60000]
loss: 0.089506 [12928/60000]
loss: 0.177988 [25728/60000]
loss: 0.058250 [38528/60000]
loss: 0.131542 [51328/60000]
Test Error:
Accuracy: 97.3%, Avg loss: 0.087681
Epoch 3
-------------------------------
loss: 0.100185 [ 128/60000]
loss: 0.021117 [12928/60000]
loss: 0.058108 [25728/60000]
loss: 0.070415 [38528/60000]
loss: 0.050509 [51328/60000]
Test Error:
Accuracy: 97.7%, Avg loss: 0.075040
Epoch 4
-------------------------------
loss: 0.051223 [ 128/60000]
loss: 0.049627 [12928/60000]
loss: 0.025712 [25728/60000]
loss: 0.090960 [38528/60000]
loss: 0.046523 [51328/60000]
Test Error:
Accuracy: 97.9%, Avg loss: 0.066997
Epoch 5
-------------------------------
loss: 0.012129 [ 128/60000]
loss: 0.019118 [12928/60000]
loss: 0.057839 [25728/60000]
loss: 0.031959 [38528/60000]
loss: 0.020570 [51328/60000]
Test Error:
Accuracy: 98.0%, Avg loss: 0.062022
Done!