【暴力搜索】有效的数独
文章目录
- 36. 有效的数独
- 解题思路:暴力搜索 + 布尔值数组判断
36. 有效的数独
36. 有效的数独
请你判断一个 9 x 9
的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。
- 数字
1-9
在每一行只能出现一次。 - 数字
1-9
在每一列只能出现一次。 - 数字
1-9
在每一个以粗实线分隔的3x3
宫内只能出现一次。(请参考示例图)
注意:
- 一个有效的数独(部分已被填充)不一定是可解的。
- 只需要根据以上规则,验证已经填入的数字是否有效即可。
- 空白格用
'.'
表示。
示例 1:
输入:board =
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
输出:true
示例 2:
输入:board =
[["8","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
输出:false
解释:除了第一行的第一个数字从 5 改为 8 以外,空格内其他数字均与 示例1 相同。 但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。
提示:
board.length == 9
board[i].length == 9
board[i][j]
是一位数字(1-9
)或者'.'
解题思路:暴力搜索 + 布尔值数组判断
这道题其实就是得暴力搜索,遍历每个位置看看是否符合数独要求,但其实我们可以在判断要求的时候进行一点小优化(也不算是大优化,因为是用空间换时间),就是用布尔值类型的数组来表示某一行、某一列、某一九宫格是否已经出现过该数字,基于这个想法,我们可以给出以下三个数组:
-
bool row[9][10]
:- 这个数组表示在
0~8
行中,数字1~9
是否出现过,出现过为true
,否则为false
。举个例子,row[3][7]
就表示第3
行中是否出现过元素7
! - 因为这道题给的整个区间就是
0~8
行,所以我们不需要考虑越界问题,并且因为要求的是1~9
的数字,所以我们直接开辟10
个元素的空间,这样子就可以用下标表示该数字了!
- 这个数组表示在
-
bool col[9][10]
:- 这个数组表示在
0~8
列中,数字1~9
是否出现过,出现过为true
,否则为false
。
- 这个数组表示在
-
bool grid[3][3][10]
:-
这个就比较特殊了,首先我们把每个九宫格看作一个整体,以水平为例,因为一共有
9
个元素,那么我们让3
个元素为一组,其中第一组作为大的下标0
,第二组作为大的下标1
,以此类推! -
对于垂直方向也是如此,所以可以得到水平和垂直方向一共就是
0~3
组,如下图所示: -
但是我们还需要表示这个九宫格中是否出现该元素,所以还需要第三维度来表示,所以这是一个三维数组,最后一维就是表示该元素是否出现过,所以范围就是
1~9
,所以一共开辟10
个空间! -
并且我们这样子做有个好处,小坐标中的
0~2
为大坐标的0
,它可以直接 通过0~2
除以3
就能得到大坐标0
;而小坐标中的3~5
为大坐标的1
,它可以直接通过3~5
除以3
就能得到大坐标1
,这是很妙的,后面以此类推!
-
有了上面三个数组,其实就类似哈希表,我们走到每个元素都能快速判断是否符合该要求,剩下的就是遍历整个区间,判断是否符合即可,不符合的话直接返回错误!
class Solution {
private:
bool row[9][10];
bool col[9][10];
bool grid[3][3][10];
public:
bool isValidSudoku(vector<vector<char>>& board) {
for(int x = 0; x < 9; ++x)
{
for(int y = 0; y < 9; ++y)
{
if(board[x][y] != '.')
{
// 判断是否重复
int tmp = board[x][y] - '0';
if(row[x][tmp] == true || col[y][tmp] == true || grid[x/3][y/3][tmp] == true)
return false;
// 记录当前元素已经走过
row[x][tmp] = col[y][tmp] = grid[x/3][y/3][tmp] = true;
}
}
}
return true;
}
};