当前位置: 首页 > article >正文

基于MODIS/Landsat/Sentinel/国产卫星遥感数据与DSSAT作物模型同化的作物产量估算

   基于过程的作物生长模拟模型DSSAT是现代农业系统研究的有力工具,可以定量描述作物生长发育和产量形成过程及其与气候因子、土壤环境、品种类型和技术措施之间的关系,为不同条件下作物生长发育及产量预测、栽培管理、环境评价以及未来气候变化评估等提供了定量化工具。但是,当作物生长模型从单点研究发展到区域尺度应用时,由于空间尺度增大而出现的地表、近地表环境非均匀性问题,导致模型中一些宏观资料的获取和参数的区域化方面存在很多困难,模型模拟结果也会存在很大的不确定性,而遥感信息在很大程度上可以帮助作物生长模型克服这些不足。
       国产卫星(如HJ、GF、ZY)、MODIS、Landsat、Sentinel-2等遥感数据是进行大范围作物生长状态监测的有效手段;作物生长模型能够利用环境因素模拟作物生长过程,揭示作物生长发育的原因与本质。随着科学技术发展和农业应用需求的驱动,数据同化方法将遥感数据与作物生长模型相结合,监测作物长势及预测作物产量,是当前农业信息技术应用研究的重要内容和发展趋势之一。二者结合既能提供宏观监测信息,又可动态反映作物生长发育过程,有利于实现优势互补,提升应用潜力。

目前在基于数据同化方法耦合遥感与作物模型开展作物估产方面,尚未有成熟的商业软件面世

【目标】

1、掌握遥感模型PROSAIL与作物模型DSSAT前向模拟与反演操作

2、了解PROSAIL与DSSAT模型的耦合思路

3、掌握基于SIMLAB软件开展模型参数全局敏感性分析

4、掌握遥感数据与作物模型同化建模原理与编程实现步骤

5、掌握基于遥感与作物模型同化的长势与产量监测实现过程以及区域制图;

主要涉及遥感数据与作物模型同化建模中的遥感数据、PROSAIL模型、DSSAT模型、参数敏感性分析、数据同化算法、模型耦合、精度验证等主要环节。培训大纲的设置主要围绕上述环节来设计相关的基础理论知识与上机操作步骤,通过逐一环节的讲解与实际操作,达到本次培训的目的,实现培训的既定目标。

专题一:遥感基础理论知识

遥感平台(如无人机)与传感器、国内外主要陆地卫星(如Landsat、SPOT、HJ、GF)

遥感基本原理、光谱响应函数、遥感数据处理流程

遥感在陆地生态系统监测方面的应用

专题二:作物长势监测与产量估算国内外研究进展

国内外研究综述

研究实例分析

专题三:Fortran编程语言

软件安装

(使用xp/win7/win8/win10专业版笔记本)

工程文件建立、基本语法操作

专题四:作物参数遥感反演基本原理

●遥感反演作物参数类型

生化组分

(叶绿素、氮、干物质、叶片水分含量、花青素)

生物物理参数

(LAI、LAD、株高、生物量)

生理生态参数

(FPAR、ET)

● 作物参数遥感反演模型

★经验模型

线性模型

指数模型

对数模型

★物理模型

辐射传输模型

几何光学模型

混合模型

计算机模拟模型

★不同方法对比分析

图片

专题五:PROSAIL模型

输入参数:LAI/LAD/叶绿素/花青素/干物质/类胡萝卜素/水分含量/…

输出参数:植被冠层反射率

以FORTRAN代码为例上机操作反射率模拟流程

模拟叶片反射率与透射率

模拟植被冠层400-2500 nm高光谱反射率曲线

模拟Landsat OLI、MODIS等遥感传感器多光谱反射率数据

图片

专题六:参数敏感性分析

待优化参数选择

局部敏感性分析

全局敏感性分析

FEFAST敏感性分析方法介绍

FSIMLAB软件操作流程

FPROSAIL模型参数全局敏感性分析

图片

图片

图片

专题七 遥感反演过程中的代价函数求解问题

代价函数构建

反演方式

反演参数

“病态”问题

先验知识

函数极值问题

反演算法介绍

优化技术

查找表

神经网络

模拟退火

应用案例分析

图片

专题八 基于查找表方法+PROSAIL模型的作物参数遥感反演

查找表原理

查找表实现

基于查找表和PROSAIL模型的作物参数遥感反演

专题九 基于优化算法+PROSAIL模型的作物参数遥感反演

代价/目标函数极值求解

测试函数极值求解

优化算法求解PROSAIL模型参数

待求解作物参数最优值提取

专题十 作物模型程序化表达与运行

●模型分类

²经验模型

²半机理模型

²机理模型

●模型选取原则

●模型调试

●模型标定

●模型对比分析

●应用案例分析

●模型运行(以DSSAT作物模型为例、FORTRAN源码)

²时间序列植被参数(如叶面积指数)演化模拟

作物参数(如LAI)时间序列变化及产量模拟过程

图片

专题十一 作物模型与遥感数据同化建模原理

●作物模型与遥感观测耦合的必要性

²作物模型优缺点

²遥感观测优缺点

²耦合必要性

●耦合方法

²驱动法

F原理

F程序实现过程

F应用实例

²数据同化方法

F发展历程

F数据同化算法介绍

²方法对比分析

●作物模型参数敏感性分析

²待优化参数选择

²局部敏感性分析

²全局敏感性分析

●作物模型与遥感数据同化

²同化遥感反演结果(如LAI遥感产品)

同化遥感观测反射率

图片

专题十二 作物模型与遥感反演值同化建模的程序化实现(第一种方式)

●Fortrtan操作平台

●遥感反演结果(如叶面积指数)

●作物模型

●变分算法

●代价函数构建

●迭代求解

●输出:作物关键参数时间序列变化、产量估算结果、区域制图

图片

图片

专题十三 作物模型与遥感反射率同化建模的程序化实现(第二种方式)

●Fortrtan操作平台

●遥感观测反射率

●作物模型

●植被冠层反射率模型

²PROSAIL前向模型反射率模拟

@耦合模型构建(作物模型+冠层反射率模型)

@变分算法

@代价函数构建

@迭代求解

输出:作物关键参数时间序列变化、产量估算结果、区域制图

图片


http://www.kler.cn/a/533226.html

相关文章:

  • idea分析sql性能
  • 【怎么用系列】短视频戒除—1—对推荐算法进行干扰
  • WordPress自定义.js文件排序实现方法
  • 大数据挖掘--两个角度理解相似度计算理论
  • 一文讲解Spring中应用的设计模式
  • 跟李沐学AI:视频生成类论文精读(Movie Gen、HunyuanVideo)
  • 使用 Redisson 实现分布式并发限流
  • Spring 面试题【每日20道】【其三】
  • 力扣73矩阵置零
  • 【Leetcode 每日一题】541. 反转字符串 II
  • Vue3 完整学习笔记 - 第二部分
  • Vue.js组件开发-实现广告图片浮动随屏幕滚动
  • LeetCode:115.不同的子序列
  • C++实现有限元三维杆单元计算 Bar3D2Node类(纯自研 非套壳)
  • 在 Ubuntu 22.04 上运行 Filebeat 7.10.2
  • vue2语法速通
  • 猫眼Java开发面试题及参考答案(上)
  • Cassandra的下载与安装
  • Java的String与StringBuilder例题
  • 如何学习大数据治理:轻松上手指南
  • 大语言模型概述
  • Redis的通用命令
  • 98,【6】 buuctf web [ISITDTU 2019]EasyPHP
  • 计算机网络安全与运维的关键 —— 常用端口全解析
  • 【JAVA】Netty使用教程
  • Java 报错:找不到或无法加载主类