SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现
SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现
目录
- SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
1.Matlab实现SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来(优化学习率,卷积核的数量,正则化系数);
2.运行环境Matlab2021及以上,data为数据集,单变量时间序列预测;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;
以上运行环境Matlab2023及以上。
直接替换Excel数据即可用,注释清晰,适合新手小白,直接运行主文件一键出图。
代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
程序设计
- 完整源码和数据获取方式私信回复SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 数据平铺
P_train = double(reshape(P_train, f_, 1, 1, M));
P_test = double(reshape(P_test , f_, 1, 1, N));
t_train = t_train';
t_test = t_test' ;
%% 数据格式转换
for i = 1 : M
p_train{i, 1} = P_train(:, :, 1, i);
end
for i = 1 : N
p_test{i, 1} = P_test( :, :, 1, i);
end
%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法
'MaxEpochs', 100, ... % 最大训练次数
'InitialLearnRate', 0.01, ... % 初始学习率为0.01
'LearnRateSchedule', 'piecewise', ... % 学习率下降
'LearnRateDropFactor', 0.1, ... % 学习率下降因子 0.1
'LearnRateDropPeriod', 70, ... % 经过训练后 学习率为 0.01*0.1
'Shuffle', 'every-epoch', ... % 每次训练打乱数据集
'Verbose', 1);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501