当前位置: 首页 > article >正文

《pytorch》——优化器的解析和使用

优化器简介

在 PyTorch 中,优化器(Optimizer)是用于更新模型参数以最小化损失函数的关键组件。在机器学习和深度学习领域,优化器是一个至关重要的工具,主要用于在模型训练过程中更新模型的参数,其目标是最小化损失函数。

工作原理

在这里插入图片描述

优化器的作用

  • 提高训练效率:不同的优化算法能够更有效地搜索参数空间,找到使损失函数最小的参数值,从而减少训练所需的时间和计算资源。
  • 避免局部最优解:一些优化算法,如带有动量的 SGD 或 Adam 等,能够在一定程度上避免模型陷入局部最优解,从而找到更优的全局最优解。
  • 处理不同类型的数据:对于不同的数据集和任务,不同的优化器可能会有不同的表现。选择合适的优化器可以提高模型的泛化能力和性能。

常见优化器算法和优化器

随机梯度下降(SGD):

  • 原理:随机梯度下降是最基础的优化算法。它通过计算每个小批量数据的梯度来更新模型的参数。
  • 代码示例:
import torch
import torch.optim as optim
from torch import nn

# 定义模型
model = nn.Linear(10, 1)
# 定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
  • 参数说明:lr 是学习率,控制每次参数更新的步长;momentum 是动量参数,用于加速收敛,模拟物理中的动量概念。

Adagrad

  • 原理:Adagrad 算法根据每个参数的历史梯度平方和来调整学习率。对于经常更新的参数,它会减小学习率;对于不经常更新的参数,它会增大学习率。
  • 代码示例:
optimizer = optim.Adagrad(model.parameters(), lr=0.01)

Adadelta

  • 原理:Adadelta 是 Adagrad 的改进版本,它通过使用一个衰减的累积梯度平方和来代替 Adagrad 中的累积梯度平方和,从而避免了学习率过早衰减的问题。
  • 代码示例:
optimizer = optim.Adadelta(model.parameters(), lr=1.0)

RMSProp

  • 原理:RMSProp 也是 Adagrad 的改进算法,它通过引入一个衰减系数来控制历史梯度平方和的累积,使得学习率不会过早衰减。
  • 代码示例:
optimizer = optim.RMSProp(model.parameters(), lr=0.001, alpha=0.99)
  • 参数说明:alpha 是衰减系数,用于控制历史梯度平方和的衰减速度。

Adam

  • 原理:Adam(Adaptive Moment Estimation)结合了 Adagrad 善于处理稀疏梯度和 RMSProp 善于处理非平稳目标的优点。它计算梯度的一阶矩估计和二阶矩估计,并利用这些估计来动态调整每个参数的学习率。
  • 代码示例:
optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999))
  • 参数说明:betas 是用于计算一阶矩估计和二阶矩估计的系数。

AdamW

  • 原理:AdamW 是对 Adam 的改进,主要改进在于将权重衰减(L2 正则化)从损失函数中分离出来,直接应用于优化器的更新规则中,避免了传统 Adam 中权重衰减与梯度更新的耦合问题。
  • 代码示例:
optimizer = optim.AdamW(model.parameters(), lr=0.001, weight_decay=0.01)
  • 参数说明:weight_decay 是权重衰减系数,用于控制模型参数的正则化强度。

自适应优化算法:

  • 如 Adagrad、Adadelta、RMSProp 和 Adam 等。这些算法会根据参数的不同特性自适应地调整学习率,以提高训练效率和模型性能。例如,Adam 算法结合了动量和自适应学习率的思想,在很多任务中表现出色。

http://www.kler.cn/a/542738.html

相关文章:

  • 100.15 AI量化面试题:PPO与GPPO策略优化算法的异同点
  • SpringBoot启动流程简略版
  • C语言基础11:分支结构以及if的使用
  • 01.Docker 概述
  • Go语言的内存分配原理
  • 30~32.ppt
  • 【含文档+PPT+源码】基于微信小程序的在线考试与选课教学辅助系统
  • Goland的context原理(存在问题,之前根本没有了解,需要更加深入了解)
  • 前端首屏时间优化方案
  • Python实现机器学习舆情分析项目的经验分享
  • Centos10 Stream 基础配置
  • 数据结构 双链表的模拟实现
  • 【前端】【面试】ref与reactive的区别
  • C# OpenCV机器视觉:模仿Halcon各向异性扩散滤波
  • 利用Ollama本地部署 DeepSeek
  • Java进阶篇之NIO基础
  • 前端常用校验规则
  • AI 编程开发插件codeium Windsurf(vscode、editor) 安装
  • MyBatis-Plus与PageHelper的jsqlparser库冲突问题
  • Ubuntu 下 nginx-1.24.0 源码分析 - ngx_atomic_cmp_set 函数
  • 网络工程师 (31)VLAN
  • 什么是WebSocket?在Python中如何应用?
  • 性格测评小程序03搭建用户管理
  • ES6~ES11新特性全解析
  • Untiy3d 铰链、弹簧,特殊的物理关节
  • 在 Navicat 17 中扩展 PostgreSQL 数据类型 - 枚举类型