当前位置: 首页 > article >正文

e2studio开发RA4M2(12)----打印函数(printf、 sprintf)的实现

e2studio开发RA4M2.12--打印函数printf、 sprintf的实现

  • 概述
  • 视频教学
  • 样品申请
  • 硬件准备
  • 参考程序
  • 源码下载
  • 新建工程
  • 工程模板
  • 保存工程路径
  • 芯片配置
  • 工程模板选择
  • 时钟设置
  • SWD调试口设置
  • UART配置
  • UART属性配置
  • 设置e2studio堆栈
  • e2studio的重定向printf设置
  • R_SCI_UART_Open()函数原型
  • 回调函数user_uart_callback ()
  • R_SCI_UART_Write()函数原型
  • sprintf()函数
  • sprintf函数声明
  • printf输出重定向到串口
  • printf输出
  • 演示

概述

printf 和 sprintf 是 C 语言中常用的输出函数,广泛应用于各种嵌入式、桌面应用程序和调试过程中。这些函数可以将格式化的数据输出到标准输出(如控制台)或存储到字符串中。在系统开发中,了解它们的底层实现不仅能够帮助优化性能,还能提高代码的可移植性和灵活性。

最近在瑞萨RA的课程,需要样片的可以加qun申请:925643491。

在这里插入图片描述

视频教学

样品申请

https://www.wjx.top/vm/rCrkUrz.aspx

硬件准备

首先需要准备一个开发板,这里我准备的是自己绘制的开发板,需要的可以进行申请。
主控为R7FA4M2AD3CFL#AA0

在这里插入图片描述

参考程序

https://github.com/CoreMaker-lab/RA4M2

https://gitee.com/CoreMaker/RA4M2

源码下载

新建工程

在这里插入图片描述

工程模板

在这里插入图片描述

保存工程路径

在这里插入图片描述

芯片配置

本文中使用R7FA4M2AD3CFL#AA0来进行演示。

在这里插入图片描述

工程模板选择

在这里插入图片描述

时钟设置

开发板上的外部高速晶振为12M.

在这里插入图片描述

需要修改XTAL为12M。

在这里插入图片描述

SWD调试口设置

在这里插入图片描述

UART配置

在这里插入图片描述

点击Stacks->New Stack->Connectivity -> UART(r_sci_uart)。

在这里插入图片描述

UART属性配置

在这里插入图片描述

设置e2studio堆栈

printf函数通常需要设置堆栈大小。这是因为printf函数在运行时需要使用栈空间来存储临时变量和函数调用信息。如果堆栈大小不足,可能会导致程序崩溃或不可预期的行为。
printf函数使用了可变参数列表,它会在调用时使用栈来存储参数,在函数调用结束时再清除参数,这需要足够的栈空间。另外printf也会使用一些临时变量,如果栈空间不足,会导致程序崩溃。
因此,为了避免这类问题,应该根据程序的需求来合理设置堆栈大小。

在这里插入图片描述

e2studio的重定向printf设置

在这里插入图片描述

在嵌入式系统的开发中,尤其是在使用GNU编译器集合(GCC)时,–specs 参数用于指定链接时使用的系统规格(specs)文件。这些规格文件控制了编译器和链接器的行为,尤其是关于系统库和启动代码的链接。–specs=rdimon.specs 和 --specs=nosys.specs 是两种常见的规格文件,它们用于不同的场景。
–specs=rdimon.specs
用途: 这个选项用于链接“Redlib”库,这是为裸机(bare-metal)和半主机(semihosting)环境设计的C库的一个变体。半主机环境是一种特殊的运行模式,允许嵌入式程序通过宿主机(如开发PC)的调试器进行输入输出操作。
应用场景: 当你需要在没有完整操作系统的环境中运行程序,但同时需要使用调试器来处理输入输出(例如打印到宿主机的终端),这个选项非常有用。
特点: 它提供了一些基本的系统调用,通过调试接口与宿主机通信。
–specs=nosys.specs
用途: 这个选项链接了一个非常基本的系统库,这个库不提供任何系统服务的实现。
应用场景: 适用于完全的裸机程序,其中程序不执行任何操作系统调用,比如不进行文件操作或者系统级输入输出。
特点: 这是一个更“裸”的环境,没有任何操作系统支持。使用这个规格文件,程序不期望有操作系统层面的任何支持。
如果你的程序需要与宿主机进行交互(如在开发期间的调试),并且通过调试器进行基本的输入输出操作,则使用 --specs=rdimon.specs。
如果你的程序是完全独立的,不需要任何形式的操作系统服务,包括不进行任何系统级的输入输出,则使用 --specs=nosys.specs。

在这里插入图片描述

R_SCI_UART_Open()函数原型

在这里插入图片描述

故可以用 R_SCI_UART_Open()函数进行配置,开启和初始化UART。

    /* Open the transfer instance with initial configuration. */
    err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg);
    assert(FSP_SUCCESS == err);

回调函数user_uart_callback ()

当数据发送的时候,可以查看UART_EVENT_TX_COMPLETE来判断是否发送完毕。

在这里插入图片描述

在这里插入图片描述

可以检查检查 “p_args” 结构体中的 “event” 字段的值是否等于 “UART_EVENT_TX_COMPLETE”。如果条件为真,那么 if 语句后面的代码块将会执行。

fsp_err_t err = FSP_SUCCESS;
volatile bool uart_send_complete_flag = false;
void user_uart_callback (uart_callback_args_t * p_args)
{
    if(p_args->event == UART_EVENT_TX_COMPLETE)
    {
        uart_send_complete_flag = true;
    }
}

R_SCI_UART_Write()函数原型

在这里插入图片描述

故可以用 R_UARTA_Write()函数进行串口数据输出。

    unsigned char buff[]="RA E2STUDIO";
    uint8_t buff_len = strlen(buff);
    err = R_SCI_UART_Write(&g_uart9_ctrl, buff, buff_len);
    if(FSP_SUCCESS != err) __BKPT();
        while(uart_send_complete_flag == false){}
    uart_send_complete_flag = false;

在这里插入图片描述

sprintf()函数

sprintf指的是字符串格式化命令,函数声明为 int sprintf(char *string, char *format [,argument,…]);,主要功能是把格式化的数据写入某个字符串中,即发送格式化输出到 string 所指向的字符串。sprintf 是个变参函数。使用sprintf 对于写入buffer的字符数是没有限制的,这就存在了buffer溢出的可能性。解决这个问题,可以考虑使用 snprintf函数,该函数可对写入字符数做出限制。

sprintf函数声明

int sprintf(char *string, char *format [,argument,…]);
参数列表

● string-- 这是指向一个字符数组的指针,该数组存储了 C 字符串。
● format-- 这是字符串,包含了要被写入到字符串 str 的文本。它可以包含嵌入的 format 标签,format 标签可被随后的附加参数中指定的值替换,并按需求进行格式化。format 标签属性是%[flags][width][.precision][length]specifier
● [argument]…:根据不同的 format 字符串,函数可能需要一系列的附加参数,每个参数包含了一个要被插入的值,替换了 format 参数中指定的每个 % 标签。参数的个数应与 % 标签的个数相同。

功能
● 把格式化的数据写入某个字符串缓冲区。

    unsigned char send_buff[100];
    sprintf(send_buff, "\nHello World!.\n");
    uint8_t len = strlen(send_buff);
    err = R_SCI_UART_Write(&g_uart9_ctrl, send_buff, len);
    if(FSP_SUCCESS != err) __BKPT();
        while(uart_send_complete_flag == false){}
    uart_send_complete_flag = false;
    memset(send_buff, '\0', sizeof(100));

printf输出重定向到串口

打印最常用的方法是printf,所以要解决的问题是将printf的输出重定向到串口,然后通过串口将数据发送出去。
注意一定要加上头文件#include <stdio.h>

#ifdef __GNUC__                                 //串口重定向
    #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
    #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif


PUTCHAR_PROTOTYPE
{
        err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1);
        if(FSP_SUCCESS != err) __BKPT();
        while(uart_send_complete_flag == false){}
        uart_send_complete_flag = false;
        return ch;
}

int _write(int fd,char *pBuffer,int size)
{
    for(int i=0;i<size;i++)
    {
        __io_putchar(*pBuffer++);
    }
    return size;
}

printf输出

    int int_i=0;
    float float_i=66.20f;
    char char_i[]="hello e2studio";
    while(1)
    {
        printf("int_i=%d\n",int_i);
        printf("float_i=%.2f\n",float_i);
        printf("char_i='%s'\n",char_i);
        int_i++;
        if(int_i>100)
            int_i=0;
        R_BSP_SoftwareDelay(1000, BSP_DELAY_UNITS_MILLISECONDS); 
    }

演示

在这里插入图片描述


http://www.kler.cn/a/543427.html

相关文章:

  • Windows中使用Docker安装Anythingllm,基于deepseek构建自己的本地知识库问答大模型,可局域网内多用户访问、离线运行
  • Untiy3d 铰链、弹簧,特殊的物理关节
  • 通配符,<include>*/*.*</include>
  • HTTP3原理解析和实战应用
  • 【分布式理论9】分布式协同:分布式系统进程互斥与互斥算法
  • 一个基于ESP32S3和INMP441麦克风实现音频强度控制RGB灯带律动的代码及效果展示
  • C++ 实践扩展(Qt Creator 联动 Visual Studio 2022)
  • OpenAI推出的Computer Use智能体:Operator是什么
  • 12、python面试题解析:filter函数解析
  • 双向链表代码
  • 科普:数据血缘理论中:任务血缘、表血缘、字段血缘
  • windows配置NTP
  • TDengine 产品由哪些组件构成
  • mongoTemplate获取某列最大值
  • 《刚刚问世》系列初窥篇-Java+Playwright自动化测试-21- 操作鼠标拖拽 - 中篇(详细教程)
  • 吴恩达:《State of AI report》展现2024的主要趋势和突破(三)
  • git,bash - 例子整理
  • wireshark网络抓包
  • mysql基本使用
  • 基于STM32对射式红外传感器计次
  • .net6 mvc 获取网站(服务器端)的IP地址和端口号
  • 正则表达式--元字符-限定符(4)
  • React - 组件之props属性
  • 网络编程(udp tcp)
  • 前沿技术新趋势:值得关注的创新发展
  • 校园网绕过认证上网很简单