当前位置: 首页 > article >正文

【大语言模型】最新ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等科研应用

 

ChatGPT、DeepSeek等大语言模型助力科研应用

随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。

ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面,这些模型能够迅速处理和分析大量数据,帮助提取有价值的规律,提升实验效率。

对于机器学习与深度学习建模,ChatGPT与DeepSeek不仅能为科研人员提供基础的建模框架,还能帮助其优化算法参数,甚至根据数据特点自动推荐合适的算法。特别是在深度学习模型的调参过程中,ChatGPT可以通过与科研人员的互动,提供多种优化方案并帮助其选择最佳方案,避免了传统方法中可能存在的局限性和低效性。这不仅提升了科研成果的准确性,还能显著缩短实验周期,加快科研进度。

   ChatGPT和DeepSeek作为先进的人工智能工具,正通过其强大的自然语言处理能力和深度学习优化能力,广泛应用于科研工作中,成为科研人员不可或缺的得力助手。

第一章、2024大语言模型最新进展与ChatGPT、DeepSeek等大语言模型

1、2024 AIGC技术最新进展介绍(生成式人工智能的基本概念与原理、最新前沿技术和发展趋势简介)

2、(实操演练)国内外大语言模型(ChatGPT 4O、Gemini、Claude、Llama3、Perplexity AI、文心一言、星火、通义千问、Kimi、智谱清言、秘塔AI、DeepSeek等)对比分析

3、最新加入:(实操演练)OpenAI 12天12场直播新功能解读与演示(ChatGPT O1模型、Canvas交互式编辑画布、联网Search功能、实时语音交互、Project新建文件夹、对话记录搜索等功能)

4、最新加入:OpenAI首个智能体(Agent)Operator简介

5、最新加入:OpenAI Deep Research简介

6、(实操演练)Llama3、DeepSeek等开源大语言模型的本地部署与对话

7、(实操演练)ChatGPT-4o对话初体验(注册与充值、购买方法)

8、(实操演练)ChatGPT-4o科研必备GPT汇总介绍(寻找好用的GPTs模型、提示词优化、生成思维导图、生成PPT、生成视频、制定个性化的学习计划、检索论文、总结论文内容、总结视频内容、撰写论文、论文翻译、论文润色与修改、参考文献格式管理、论文评审、数据分析、生成代码、代码调试等)

9、(实操演练)GPT Store简介与使用

10、(实操演练)定制自己的专属GPTs(制作专属GPTs的两种方式:聊天/配置参数、利用Knowledge上传本地知识库提升专属GPTs性能、利用Actions通过API获取外界信息、专属GPTs的分享)

11、(实操演练)ChatGPT-4o对话记录保存与管理

12、最新加入:(实操演练)Claude大语言模型对话初体验(对话界面主要功能介绍、上传数据文件分析并可视化、文献智能解读、自动生成代码等功能演示)

13、最新加入:(实操演练)DeepSeek使用初体验(注册与登录、App下载与安装、界面主要功能介绍与演示等)

第二章、 大语言模型提示词使用方法与高级技巧(最新加入思维链及逆向工程及GPTs)

1、(实操演练)ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)

2、最新加入:DeepSeek与传统大语言模型在提示词撰写上的变与不变

3、(实操演练)常用的ChatGPT提示词模板

4、最新加入:(实操演练)基于思维链(Chain of Thought, CoT)的ChatGPT提示词优化(让OpenAI o1推理能力变强的诀窍之一)

5、(实操演练)ChatGPT-4o提示词优化(Promptest、Prompt Perfect、PromptPal提示宝等)

6、(实操演练)ChatGPT-4o突破Token限制实现接收或输出万字长文(Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)

7、(实操演练)控制ChatGPT-4o的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)

8、(实操演练)保存喜欢的ChatGPT-4o提示词并一键调用

9、最新加入:(实操演练)ChatGPT-4o提示词逆向工程(破解提示词的常用方法、对别人创建的GPTs提示词进行破解)

10、最新加入(实操演练)ChatGPT-4o提示词保护策略以及构建坚不可摧的GPTs

第三章、ChatGPT-4o和DeepSeek-R1等大语言模型助力日常生活、学习与工作

1、(实操演练)ChatGPT-4o和DeepSeek-R1助力中小学生功课辅导(写作文、作文批改、求解数学题、练习英语听说读写、物理计算、化学计算等)

2、(实操演练)ChatGPT-4o和DeepSeek-R1助力文案撰写与润色修改

3、(实操演练)ChatGPT-4o和DeepSeek-R1助力家庭健康管理(化验单结果解读、就诊咨询与初步诊断、常见慢病管理、日常营养膳食建议等)

4、(实操演练)ChatGPT-4o和DeepSeek-R1助力大学生求职与就业(撰写简历、模拟面试、职业规划等)

5、(实操演练)ChatGPT-4o和DeepSeek-R1助力商业工作(行业竞品检索与分析、产品创意设计与建议、推广营销策略与方案制定、撰写合同)

6、(实操演练)利用ChatGPT-4o和DeepSeek-R1创建精美的思维导图

7、(实操演练)利用ChatGPT-4o和DeepSeek-R1生成流程图、甘特图

8、(实操演练)利用ChatGPT-4o和DeepSeek-R1制作PPT

9、(实操演练)利用ChatGPT-4o和DeepSeek-R1自动创建视频

10、(实操演练)ChatGPT-4o和DeepSeek-R1辅助教师高效备课(苏格拉底式教学、为不同专业学生生成不同的教学内容等)

11、(实操演练)ChatGPT-4o和DeepSeek-R1辅助学生高效学习(利用GPTs生成专属学习计划)

12、最新加入(实操演练)将ChatGPT-4o和DeepSeek-R1对话记录中的数学公式完美复制到Word文档

第四章、ChatGPT-4o和DeepSeek-R1等大语言模型助力课题申报、论文选题及实验方案设计

1、课题申请书撰写技巧及要点剖析(项目名称、关键词、摘要、立项依据、参考文献、研究目标、研究内容、研究方案、关键科学问题、可行性分析、创新点与特色之处、预期研究成果、工作基础等)

2、(实操演练)利用ChatGPT-4o和DeepSeek-R1分析指定领域的热门研究方向

3、(实操演练)利用ChatGPT-4o和DeepSeek-R1辅助撰写、润色课题申报书的各部分内容

4、(实操演练)利用ChatGPT-4o和DeepSeek-R1总结指定论文的局限性与不足,并给出潜在的改进思路与建议

5、(实操演练)利用ChatGPT-4o和DeepSeek-R1评估指定改进思路新颖性与已发表的类似工作

6、(实操演练)利用ChatGPT-4o和DeepSeek-R1进一步细化改进思路,凝练论文的选题与创新点

7、(实操演练)利用ChatGPT-4o和DeepSeek-R1给出具体的算法步骤,并自动生成算法的Python示例代码框架

8、(实操演练)利用ChatGPT-4o和DeepSeek-R1设计完整的实验方案与数据分析流程

9、(实操演练)利用ChatGPT-4o和DeepSeek-R1给出论文Discussion部分的切入点和思路

10、案例演示与实操练习

第五章、ChatGPT-4o和DeepSeek-R1等大语言模型助力信息检索、文献泛读与精读、论文写作与投稿、专利idea构思与交底书的撰写

1、(实操演练)传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)

2、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现联网检索文献

3、(实操演练)利用ChatGPT-4o和DeepSeek-R1阅读与总结分析学术论文内容(论文主要工作、创新点、局限性与不足、多文档对比分析等)

4、(实操演练)利用ChatGPT-4o和DeepSeek-R1解读论文中的系统框图工作原理

5、(实操演练)利用ChatGPT-4o和DeepSeek-R1解读论文中的数学公式含义

6、(实操演练)利用ChatGPT-4o和DeepSeek-R1解读论文中图表中数据的意义及结论

7、(实操演练)ChatGPT-4o总结Youtube视频内容

8、(实操演练)利用ChatGPT-4o和DeepSeek-R1完成学术论文的选题设计与优化

9、(实操演练)利用ChatGPT-4o和DeepSeek-R1自动生成论文的总体框架、论文摘要、前言介绍、文献综述、完整长篇论文等

10、(实操演练)利用ChatGPT-4o和DeepSeek-R1完成论文翻译(指定翻译角色和翻译领域、提供背景提示)

11、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现论文语法校正

12、(实操演练)利用ChatGPT-4o和DeepSeek-R1完成段落结构及句子逻辑润色

13、(实操演练)利用ChatGPT-4o和DeepSeek-R1完成论文降重

14、(实操演练)利用ChatGPT-4o和DeepSeek-R1完成论文参考文献格式的自动转换

15、(实操演练)ChatGPT-4o和DeepSeek-R1辅助审稿人完成论文评审意见的撰写

16、(实操演练)ChatGPT-4o和DeepSeek-R1辅助投稿人完成论文评审意见的回复

17、(实操演练)ChatGPT-4o文献检索、论文写作必备GPTs总结

18、(实操演练)利用ChatGPT-4o和DeepSeek-R1完成发明专利idea的挖掘与构思

19、(实操演练)利用ChatGPT-4o和DeepSeek-R1完成发明专利交底书的撰写

20、最新加入:(实操演练)利用ChatGPT-4o with canvas完成人机交互协同修改论文(智能修改建议、篇幅调整、阅读水平等级调整、润色修改等)

第六章、ChatGPT-4o和DeepSeek-R1等大语言模型助力编程入门、科学计算、数据可视化、数据预处理【与Python融合】

1、(实操演练)Python环境搭建(Python软件下载、安装与版本选择;PyCharm下载、安装;Python之Hello World;第三方模块的安装与使用;Python 2.x与Python 3.x对比)

2、(实操演练)Python基本语法(Python变量命名规则;Python基本数学运算;Python常用变量类型的定义与操作;Python程序注释)

3、(实操演练)Python流程控制(条件判断;for循环;while循环;break和continue)

4、(实操演练)Python函数与对象(函数的定义与调用;函数的参数传递与返回值;变量作用域与全局变量;对象的创建与使用)

5、(实操演练)Matplotlib的安装与图形绘制(设置散点、线条、坐标轴、图例、注解等属性;绘制多图;图的嵌套;折线图、柱状图、饼图、地图等各种图形的绘制)

6、(实操演练)Seaborn、Bokeh、Pyecharts等高级绘图库的安装与使用(动态交互图的绘制、开发大数据可视化页面等)

7、(实操演练)科学计算模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

8、(实操演练)利用ChatGPT-4o和DeepSeek-R1上传本地数据(Excel/CSV表格、txt文本、PDF、图片等)

9、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现图像处理(图像缩放、旋转、裁剪、去噪与去模糊)

10、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现描述性统计分析(数据的频数分析:统计直方图;数据的集中趋势分析:数据的相关分析)

11、(实操演练)常用的数据预处理方法(数据标准化与归一化、数据异常值与缺失值处理、数据离散化及编码处理、手动生成新特征)

12、(实操演练)融合ChatGPT-4o和DeepSeek-R1与Python的数据预处理代码自动生成与运行

13、(实操演练)利用ChatGPT-4o和DeepSeek-R1自动生成数据统计分析图表

14、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现代码逐行讲解

15、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现代码Bug调试与自动修改

16、案例演示与实操练习

第七章、ChatGPT-4o和DeepSeek-R1等大语言模型助力机器学习建模及高级应用

1、BP神经网络的基本原理(人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)

2、(实操演练)BP神经网络的Python代码实现(划分训练集和测试集、数据归一化)

3、(实操演练)BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?)

4、(实操演练)值得研究的若干问题(欠拟合与过拟合、评价指标选择、样本不平衡等)

5、(实操演练)BP神经网络中的ChatGPT和DeepSeek-R1提示词库讲解

6、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现BP神经网络模型的代码自动生成与运行

7、SVM的工作原理(核函数的作用是什么?什么是支持向量?如何解决多分类问题?)

8、决策树的工作原理(什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系)

9、随机森林的工作原理(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”的本质是什么?怎样可视化、解读随机森林的结果?)

10、Bagging与Boosting的区别与联系

11、AdaBoost vs. Gradient Boosting的工作原理

12、(实操演练)常用的GBDT算法框架(XGBoost、LightGBM)

13、(实操演练)决策树、随机森林、XGBoost、LightGBM中的ChatGPT提示词库讲解

14、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现决策树、随机森林、XGBoost、LightGBM模型的代码自动生成与运行

15、案例演示与实操练习

第八章、ChatGPT-4o和DeepSeek-R1等大语言模型助力助力机器学习模型优化:变量降维与特征选择

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理

3、(实操演练)常见的特征选择方法(优化搜索、Filter和Wrapper等;前向与后向选择法;区间法;无信息变量消除法;正则稀疏优化方法等)

4、遗传算法(Genetic Algorithm, GA)的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?选择、交叉、变异三个算子的作用分别是什么?)

5、(实操演练)PCA、PLS、特征选择、群优化算法的ChatGPT-4o和DeepSeek-R1提示词库讲解

6、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现变量降维与特征选择算法的代码自动生成与运行

第九章、ChatGPT-4o和DeepSeek-R1等大语言模型助力卷积神经网络建模与代码自动生成

1、深度学习简介(深度学习大事记、深度学习与传统机器学习的区别与联系)

2、卷积神经网络的基本原理(什么是卷积核、池化核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?)

3、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

4、(实操演练)利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

5、(实操演练)卷积神经网络调参技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)

6、(实操演练)卷积神经网络中的ChatGPT-4o和DeepSeek-R1提示词库讲解

7、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现卷积神经网络模型的代码自动生成与运行

(1)CNN预训练模型实现物体识别;

(2)利用卷积神经网络抽取抽象特征;

(3)自定义卷积神经网络拓扑结构

8、案例演示与实操练习

第十章、ChatGPT-4o和DeepSeek-R1等大语言模型助力迁移学习建模与代码自动生成

1、迁移学习算法的基本原理

2、(实操演练)基于深度神经网络模型的迁移学习算法

3、(实操演练)迁移学习中的ChatGPT-4oT和DeepSeek-R1提示词库讲解

4、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现迁移学习模型的代码自动生成与运行

5、实操练习

第十一章、ChatGPT-4o和DeepSeek-R1等大语言模型助力RNN、LSTM建模与代码自动生成

1、循环神经网络RNN的基本工作原理

2、长短时记忆网络LSTM的基本工作原理

3、(实操演练)RNN与LSTM中的ChatGPT-4o和DeepSeek-R1提示词库讲解

4、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现RNN、LSTM模型的代码自动生成与运行

5、案例演示与实操练习

第十二章、ChatGPT-4o和DeepSeek-R1等大语言模型助力YOLO目标检测建模与代码自动生成

1、什么是目标检测?目标检测与目标识别的区别与联系

2、YOLO模型的工作原理,YOLO模型与传统目标检测算法的区别

3、(实操演练)YOLO模型中的ChatGPT-4o和DeepSeek-R1提示词库讲解

4、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现YOLO目标检测模型的代码自动生成与运行

(1)利用预训练好的YOLO模型实现图像、视频、摄像头实时检测;

(2)数据标注演示(LabelImage使用方法介绍);

(3)训练自己的目标检测数据集

5、案例演示与实操练习

第十三章、ChatGPT-4o和DeepSeek-R1等大语言模型助力机器学习与深度学习建模的案例实践应用

1、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现近红外光谱分析模型的建立、代码自动生成与运行

2、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现生物医学信号(时间序列、图像、视频数据)分类识别与回归拟合模型的建立、代码自动生成与运行

3、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现遥感图像目标检测、地物分类及语义分割模型的建立、代码自动生成与运行

4、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现大气污染物预测模型的建立、代码自动生成与运行

5、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现自然语言处理模型的建立、代码自动生成与运行

6、案例演示与实操练习

第十四章、ChatGPT-4o高级绘图技术

1、(实操演练)利用ChatGPT-4o DALL.E 3生成图像(下载图像、修改图像)

2、(实操演练)ChatGPT-4o DALL.E 3常用的提示词库(广告海报、Logo、3D模型、插画、产品包装、烹饪演示、产品外观设计、UI设计、吉祥物设计等)

3、(实操演练)ChatGPT-4o DALL.E 3中的多种视图(正视图、后视图、侧视图、四分之三视图、鸟瞰视图、全景视图、第一人称视角、分割视图、截面视图等)

4、(实操演练)ChatGPT-4o DALL.E 3中的多种光效(电致发光、化学发光、生物荧光、极光闪耀、全息光等)

5、(实操演练)ChatGPT-4o DALL.E 3格子布局与角色一致性的实现

6、(实操演练)ChatGPT-4o DALL.E 3生成动图GIF

7、(实操演练)Midjourney工具使用讲解

8、(实操演练)Stable Diffusion工具使用讲解

9、(实操演练)Runway图片生成动画工具使用讲解

10、案例演示与实操练习

第十五章、基于ChatGPT-4o 和DeepSeek-R1等大语言API接口调用与完整项目开发

1、(实操演练)GPT模型API接口的调用方法(API Key的申请、API Key接口调用方法与参数说明)

2、最新加入:DeepSeek API接口的调用方法(API Key的申请、API Key接口调用方法与参数说明)

3、(实操演练)利用GPT和DeepSeek等API实现完整项目开发

(1)聊天机器人的开发

(2)利用GPT API和Text Embedding生成文本的特征向量

(3)构建基于多模态(语音、文本、图像)的阿尔茨海默病早期筛查程序

3、案例演示与实操练习

第十六章、 总结与讨论

1、总结

2、讨论

原文


http://www.kler.cn/a/543892.html

相关文章:

  • 测试自动化落地方向
  • 关于 IoT DC3 中设备(Device)的理解
  • 在 ARM64 架构系统离线安装 Oracle Java 8 全流程指南
  • DeepSeek投喂数据(训练AI)
  • yum报错 Could not resolve host: mirrorlist.centos.org
  • 「vue3-element-admin」告别 vite-plugin-svg-icons!用 @unocss/preset-icons 加载本地 SVG 图标
  • 【Mac排错】ls: command not found 终端命令失效的解决办法
  • 【Elasticsearch】Elasticsearch检索方式全解析:从基础到实战(二)
  • RabbitMQ的死信队列的产生与处理
  • 如何使用deepseek等AI工具辅助web后端工作的开发
  • VMware 虚拟机 ubuntu 20.04 扩容工作硬盘
  • Java常用设计模式面试题总结(内容详细,简单易懂)
  • 动态规划LeetCode-1049.最后一块石头的重量Ⅱ
  • HAC++: Towards 100X Compression of 3D Gaussian Splatting
  • 力扣——【104. 二叉树的最大深度】
  • Apache Kafka 中的认证、鉴权原理与应用
  • 安全运维:cmd命令大全(非常详细)零基础入门到精通,收藏这一篇就够了_cmd的20个基本命令
  • C++ 设计模式-桥接模式
  • 解决珠玑妙算游戏问题:C 语言实现
  • 云原生AI Agent应用安全防护方案最佳实践(上)
  • 数据库高安全—数据保护:数据动态脱敏
  • 【Stable Diffusion部署至Google Colab】
  • 使用Python爬虫获取1688公司档案信息:深入解析
  • halcon三维点云数据处理(十三)reduce_object_model_3d_by_view
  • 适配器模式 + 外观模式联合使用:新旧系统的平滑整合之道
  • visual studio 2008的试用版评估期已结束的解决办法