当前位置: 首页 > article >正文

AF3 superimpose函数解读

AlphaFold3  superimpose函数通过使用SVD最小化RMSD,将坐标叠加到参考上,在蛋白质结构预测中用于比较预测结构与真实结构的相似性。

源代码:

from src.utils.geometry.alignment import weighted_rigid_align
from src.utils.geometry.vector import Vec3Array
import torch


def compute_rmsd(tensor1, tensor2, mask, eps=1e-6):
    """Compute the RMSD between two tensors."""
    diff = tensor1 - tensor2
    squared_diff = diff ** 2
    sum_squared_diff = squared_diff.sum(dim=-1)

    # Mask out invalid positions
    sum_squared_diff = sum_squared_diff * mask

    # Average over valid positions
    denom = mask.sum(dim=-1) + eps
    mean_squared_diff = torch.sum(sum_squared_diff, dim=-1) / denom

    # Square root to get RMSD
    rmsd = torch.sqrt(mean_squared_diff + eps)
    return rmsd


def superimpose(reference, coords, mask):
    """
        Superimposes coordinates onto a reference by minimizing RMSD using SVD.

        Args:
            reference:
                [*, N, 3] reference tensor
            coords:
                [*, N, 3] tensor
            mask:
                [*, N] tensor
        Returns:
            A tuple of [*, N, 3] superimposed coords and [*] final RMSDs.
    """
    # To Vec3Array for alignment
    reference = Vec3Array.from_array(reference)
    coords = Vec3Array.from_array(coords)

    # Align the coordinates to the reference
    aligned_coords = weighted_rigid_align(coords, reference, weights=mask, mask=mask)
    aligned_coords = aligned_coords.to_tensor()
    reference = reference.to_tensor()
    # Compute RMSD
    rmsds = compute_rmsd(reference, aligned_coords)
    return aligned_coords, rmsds

代码解析

1. compute_rmsd 函数

功能: 计算两组坐标 tensor1 和 tensor2 之间的 RMSD,常用于比较蛋白质结构的相似性。

def compute_rmsd(tensor1, tensor2, mask, eps=1e-6):
  • tensor1: 真实坐标 (ground truth) [*, N, 3]
  • tensor2: 预测坐标 [*, N, 3]
  • mask: 指定哪些坐标是有效的 [*, N]
  • eps: 避免除零问题的小常数

步骤解析

diff = tensor1 - tensor2  # 计算两者的差值
squared_diff = diff ** 2  # 差值平方
sum_squared_diff = squared_diff.sum(dim=-1)  # 在最后一个维度 (3D) 上求和,即每个点的平方误差和

计算的是欧几里得距离的平方,形状 [*, N]

sum_squared_diff = sum_squared_diff * mask  # 只保留mask中有效的坐标

屏蔽无效坐标(未对齐的或者不感兴趣的原子)。

denom = mask.sum(dim=-1) + eps  # 计算有效坐标数
mean_squared_diff = torch.sum(sum_squared_diff, dim=-1) / denom  # 计算均方误差

有效原子位置的均方误差(MSE)。

rmsd = torch.sqrt(mean_squared_diff + eps)  # 开方得到 RMSD

最终 RMSD 计算完成,返回的是 [ * ] 形状的张量,即每个样本的 RMSD 值。


2. superimpose 函数

功能:
使用加权刚性对齐(Weighted Rigid Alignment) 方法,通过奇异值分解 (SVD) 使预测坐标 coords 尽可能匹配 reference,然后计算 RMSD。

def superimpose(reference, coords, mask):
  • reference: 真实的结构坐标 [*, N, 3]
  • coords: 需要对齐的预测坐标 [*, N, 3]
  • mask: 有效位置的掩码 [*, N]

步骤解析

reference = Vec3Array.from_array(reference)
coords = Vec3Array.from_array(coords)

这里 Vec3Array 是一个三维向量的封装类,使得操作更符合几何向量计算需求。

aligned_coords = weighted_rigid_align(coords, reference, weights=mask, mask=mask)

核心部分

  • weighted_rigid_align 是一个加权刚性对齐函数,使用SVD(奇异值分解)寻找最优旋转和平移,将 coords 与 reference 对齐。
  • weights=mask 代表对对齐过程加权,仅使用有效坐标对齐。
aligned_coords = aligned_coords.to_tensor()
reference = reference.to_tensor()

将 Vec3Array 转回 PyTorch 张量,方便计算 RMSD。

rmsds = compute_rmsd(reference, aligned_coords)
  • 计算对齐后的 RMSD,衡量对齐质量。

最终返回:

  • aligned_coords: 对齐后的坐标
  • rmsds: 对齐后的 RMSD 值

代码核心逻辑

  1. compute_rmsd
    • 计算两组坐标的 RMSD(用于衡量预测误差)。
  2. superimpose
    • 通过 SVD 进行刚性对齐,使预测结构尽量匹配真实结构。
    • 计算对齐后的 RMSD,评估对齐质量。

这两个函数主要用于蛋白质结构比对,常用于 AlphaFold3 这种结构预测模型的评估。


http://www.kler.cn/a/544025.html

相关文章:

  • 【Antv G2 5.x】饼图添加点击事件,获取当前坐标数据
  • AI大模型介绍yolo
  • 【Elasticsearch】分析器的构成
  • 萌新学 Python 之元组 tuple
  • 三步本地部署deepseekr1,支持macOs,ubuntu,Windows
  • 学习笔记十九:K8S生成pod过程
  • 持久性HTTPVS.非持久性HTTP
  • ASP.NET Core用MediatR实现领域事件
  • 2025年02月11日Github流行趋势
  • MySQL的字符集(Character Set)和排序规则(Collation)
  • JavaScript中Map和Set数据结构详解
  • Gitlib 企业本地部署
  • docker compose部署flink集群
  • 盛铂科技SWFA100捷变频频率综合器:高性能国产射频系统的关键选择
  • Vue前端开发-Pinia其他扩展插件
  • android 安装第三方apk自动赋予运行时权限
  • OSPF高级特性(3):安全特效
  • 【Java并发编程之如何在线程中安全地访问一个全局Boolean类型的静态变量?】
  • 详解spotbugs -textui常用命令(包括生成html测试报告)
  • Vue.js 响应式原理与数据绑定
  • 4. React 中的 CSS
  • Visual Studio 中的键盘快捷方式
  • 【Leetcode 每日一题】1760. 袋子里最少数目的球
  • 【C++学习笔记】if 和 if constexpr
  • Openssl的使用,CA证书,中间证书,服务器证书的生成与使用
  • 如何设计一个高效、稳定的秒杀系统?