P6792 [SNOI2020] 区间和 Solution
Description
给定序列 a = ( a 1 , a 2 , ⋯ , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,⋯,an),有 m m m 个操作分两种:
- chmax ( l , r , v ) \operatorname{chmax}(l,r,v) chmax(l,r,v):对每个 i ∈ [ l , r ] i \in [l,r] i∈[l,r] 执行 a i ← max ( a i , v ) a_i \gets \max(a_i,v) ai←max(ai,v).
- query ( l , r ) \operatorname{query}(l,r) query(l,r):求 max ( 0 , max [ u , v ] ∈ [ l , r ] ∑ i = u v a i ) \max(0,\max\limits_{[u,v]\in [l,r]}\sum\limits_{i=u}^v a_i) max(0,[u,v]∈[l,r]maxi=u∑vai).
Limitations
1
≤
n
≤
1
0
5
1 \le n \le 10^5
1≤n≤105
1
≤
m
≤
2
×
1
0
5
1 \le m \le 2\times 10^5
1≤m≤2×105
1
≤
l
≤
r
≤
n
1 \le l \le r \le n
1≤l≤r≤n
∣
a
i
∣
,
∣
v
∣
≤
1
0
9
|a_i|,|v| \le 10^9
∣ai∣,∣v∣≤109
3
s
,
512
MB
3\text{s},512\text{MB}
3s,512MB
Solution
看到
chmax
\operatorname{chmax}
chmax 先来一个吉司机.
然后下传标记相当于区间加上
(
v
−
minv
)
(v-\textit{minv})
(v−minv),这样就把问题变成区间加正数.
然后可以上 KTT
维护,具体见 P5693.
但是要注意 pushup
时要考虑吉司机的
min
\min
min,所以要将两者间较大值的
k
k
k 全部清零.
时间复杂度应该是
O
(
(
n
+
m
)
log
3
n
)
O((n+m)\log^3n)
O((n+m)log3n)
Code
5.19 KB , 4.93 s , 40.97 MB (in total, C++20 with O2) 5.19\text{KB},4.93\text{s},40.97\text{MB}\;\texttt{(in total, C++20 with O2)} 5.19KB,4.93s,40.97MB(in total, C++20 with O2)
// Problem: P6792 [SNOI2020] 区间和
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P6792
// Memory Limit: 512 MB
// Time Limit: 3000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
const i64 inf = 3e18;
struct Line {
int k;
i64 b;
Line(int _k = 0, i64 _b = 0): k(_k), b(_b) {}
void add(i64 v) {
b += k * v;
}
void reset() {
k = 0;
}
};
inline Line operator+(const Line& lhs, const Line& rhs) {
return Line(lhs.k + rhs.k, lhs.b + rhs.b);
}
inline pair<Line, i64> find(const Line& a, const Line& b) {
if (a.k < b.k || (a.k == b.k && a.b < b.b)) {
return find(b, a);
}
if (a.b >= b.b) {
return make_pair(a, inf);
}
return make_pair(b, (b.b - a.b) / (a.k - b.k));
}
struct Node {
int l, r;
Line lmax, rmax, tmax, sum;
i64 x, tag, min, sec;
inline Node reset() {
Node res = *this;
res.lmax.reset();
res.rmax.reset();
res.tmax.reset();
res.sum.reset();
return res;
}
};
using Tree = vector<Node>;
inline int ls(int u) { return 2 * u + 1; }
inline int rs(int u) { return 2 * u + 2; }
inline void merge(Node& res, const Node& le, const Node& ri) {
i64 x0 = min(le.x, ri.x);
Line sum = le.sum + ri.sum;
auto [lmax, x1] = find(le.lmax, le.sum + ri.lmax);
auto [rmax, x2] = find(ri.rmax, le.rmax + ri.sum);
auto [temp, x3] = find(le.tmax, ri.tmax);
auto [tmax, x4] = find(temp, le.rmax + ri.lmax);
res.lmax = lmax;
res.rmax = rmax;
res.tmax = tmax;
res.sum = sum;
res.x = min({x0, x1, x2, x3, x4});
}
inline void pushup(Tree& tr, int u) {
if (tr[ls(u)].min == tr[rs(u)].min) {
tr[u].min = tr[ls(u)].min;
tr[u].sec = min(tr[ls(u)].sec, tr[rs(u)].sec);
merge(tr[u], tr[ls(u)], tr[rs(u)]);
}
else if (tr[ls(u)].min < tr[rs(u)].min) {
tr[u].min = tr[ls(u)].min;
tr[u].sec = min(tr[ls(u)].sec, tr[rs(u)].min);
merge(tr[u], tr[ls(u)], tr[rs(u)].reset());
}
else {
tr[u].min = tr[rs(u)].min;
tr[u].sec = min(tr[ls(u)].min, tr[rs(u)].sec);
merge(tr[u], tr[ls(u)].reset(), tr[rs(u)]);
}
}
inline void add(Tree& tr, int u, i64 w) {
if (w <= tr[u].min) {
return;
}
i64 v = w - tr[u].min;
tr[u].min = w;
tr[u].tag = max(tr[u].tag, w);
tr[u].x -= v;
tr[u].lmax.add(v);
tr[u].rmax.add(v);
tr[u].sum.add(v);
tr[u].tmax.add(v);
}
inline void pushdown(Tree& tr, int u) {
if (tr[u].tag != -inf) {
add(tr, ls(u), tr[u].tag);
add(tr, rs(u), tr[u].tag);
tr[u].tag = -inf;
}
}
inline void build(Tree& tr, int u, int l, int r, vector<i64>& a) {
tr[u].l = l;
tr[u].r = r;
tr[u].tag = -inf;
if (l == r) {
Line f(1, a[l]);
tr[u].lmax = tr[u].rmax = tr[u].tmax = tr[u].sum = f;
tr[u].x = tr[u].sec = inf;
tr[u].min = a[l];
return;
}
int mid = (l + r) >> 1;
build(tr, ls(u), l, mid, a);
build(tr, rs(u), mid + 1, r, a);
pushup(tr, u);
}
inline void defeat(Tree& tr, int u, i64 v) {
tr[u].tag = max(tr[u].tag, v);
if (v - tr[u].min > tr[u].x) {
defeat(tr, ls(u), v);
defeat(tr, rs(u), v);
pushup(tr, u);
}
else {
add(tr, u, v);
}
}
inline void update(Tree& tr, int u, int l, int r, i64 v) {
if (tr[u].min >= v) {
return;
}
if (l <= tr[u].l && tr[u].r <= r && v < tr[u].sec) {
return defeat(tr, u, v);
}
int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(tr, u);
if (l <= mid) {
update(tr, ls(u), l, r, v);
}
if (r > mid) {
update(tr, rs(u), l, r, v);
}
pushup(tr, u);
}
inline Node query(Tree& tr, int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) {
return tr[u];
}
int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(tr, u);
if (r <= mid) {
return query(tr, ls(u), l, r);
}
if (l > mid) {
return query(tr, rs(u), l, r);
}
Node le = query(tr, ls(u), l, r), ri = query(tr, rs(u), l, r), res;
merge(res, le, ri);
return res;
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n, m;
scanf("%d %d", &n, &m);
vector<i64> a(n);
for (int i = 0; i < n; i++) {
scanf("%lld", &a[i]);
}
Tree ktt(n << 2);
build(ktt, 0, 0, n - 1, a);
for (int i = 0, op, l, r; i < m; i++) {
scanf("%d %d %d", &op, &l, &r);
l--, r--;
if (op == 0) {
i64 v;
scanf("%lld", &v);
update(ktt, 0, l, r, v);
}
else {
printf("%lld\n", max(query(ktt, 0, l, r).tmax.b, 0LL));
}
}
return 0;
}