当前位置: 首页 > article >正文

[高等数学] 分部积分法

一、知识点

设函数 u = u ( x ) u=u(x) u=u(x) v = v ( x ) v=v(x) v=v(x) 具有连续函数。那么,两个函数乘积的导数公式为 ( u v ) ′ = u ′ v + u v ′ , (uv)'=u'v+uv', (uv)=uv+uv 移项得 u v ′ = ( u v ) ′ − u ′ v . uv'=(uv)'-u'v. uv=(uv)uv.

对上述等式两边求不定积分,得
∫ u v ′ d x = u v − ∫ u ′ v d x . (1) \int uv'dx=uv-\int u'vdx.\tag{1} uvdx=uvuvdx.(1)

公式 ( 1 ) (1) (1) 称为分部积分公式.

为简便起见,公式 ( 1 ) (1) (1) 可以写成以下形式:
∫ u d v = u v − ∫ v d u . (2) \int udv=uv-\int vdu.\tag{2} udv=uvvdu.(2)


二、练习题(求不定积分)

( 1 ) ∫ x s i n x d x = − ∫ x d c o s x = − ( x c o s x − ∫ c o s x d x ) = s i n x − x c o s x + C \begin{aligned} (1) &\int xsinxdx\\ &=-\int xdcosx\\ &=-(xcosx-\int cosxdx)\\ &=sinx-xcosx+C \end{aligned} (1)xsinxdx=xdcosx=(xcosxcosxdx)=sinxxcosx+C


( 2 ) ∫ l n x d x = x l n x − ∫ x d ( l n x ) = x l n x − ∫ d x = x l n x − x + C \begin{aligned} (2) &\int lnxdx\\ &=xlnx-\int xd(lnx)\\ &=xlnx-\int dx\\ &=xlnx-x+C \end{aligned} (2)lnxdx=xlnxxd(lnx)=xlnxdx=xlnxx+C


( 3 ) ∫ a r c s i n x d x = x a r c s i n x − ∫ x d ( a r c s i n x ) = x a r c s i n x − ∫ x 1 − x 2 d x = x a r c s i n x + 1 2 ∫ d ( 1 − x 2 ) 1 − x 2 = x a r c s i n x + 1 − x 2 + C \begin{aligned} (3) &\int arcsinxdx\\ &=xarcsinx-\int xd(arcsinx)\\ &=xarcsinx-\int \frac{x}{\sqrt{1-x^2}}dx\\ &=xarcsinx+\frac{1}{2}\int \frac{d(1-x^2)}{\sqrt{1-x^2}}\\ &=xarcsinx+\sqrt{1-x^2}+C \end{aligned} (3)arcsinxdx=xarcsinxxd(arcsinx)=xarcsinx1x2 xdx=xarcsinx+211x2 d(1x2)=xarcsinx+1x2 +C


( 4 ) ∫ x e − x d x = − x e − x − ∫ e − x d x = − x e − x − e − x + C \begin{aligned} (4) &\int xe^{-x}dx\\ &=-xe^{-x}-\int e^{-x}dx\\ &=-xe^{-x}-e^{-x}+C \end{aligned} (4)xexdx=xexexdx=xexex+C


( 5 ) ∫ x 2 l n x d x = ∫ 1 3 l n x d ( x 3 ) = x 3 l n x 3 − 1 3 ∫ x 3 d ( l n x ) = x 3 l n x 3 − 1 3 ∫ x 2 d x = x 3 l n x 3 − x 3 9 + C \begin{aligned} (5) &\int x^2lnxdx\\ &=\int \frac{1}{3}lnxd(x^3)\\ &=\frac{x^3lnx}{3}-\frac{1}{3}\int x^3d(lnx)\\ &=\frac{x^3lnx}{3}-\frac{1}{3}\int x^2dx\\ &=\frac{x^3lnx}{3}-\frac{x^3}{9}+C \end{aligned} (5)x2lnxdx=31lnxd(x3)=3x3lnx31x3d(lnx)=3x3lnx31x2dx=3x3lnx9x3+C


( 6 ) ∫ e − x c o s x d x = ∫ e − x d s i n x = e − x s i n x − ∫ s i n x d ( e − x ) = e − x s i n x + ∫ e − x s i n x d x = e − x s i n x − ∫ e − x d c o s x = e − x s i n x − e − x c o s x − ∫ c o s x d ( e − x ) ∴ ∫ e − x c o s x d x = e − x s i n x − e − x c o s x 2 + C \begin{aligned} (6) &\int e^{-x}cosxdx\\ &=\int e^{-x}dsinx\\ &=e^{-x}sinx-\int sinxd(e^{-x})\\ &=e^{-x}sinx+\int e^{-x}sinxdx\\ &=e^{-x}sinx-\int e^{-x}dcosx\\ &=e^{-x}sinx-e^{-x}cosx-\int cosx d(e^{-x})\\ &\therefore \int e^{-x}cosxdx=\frac{e^{-x}sinx-e^{-x}cosx}{2}+C \end{aligned} (6)excosxdx=exdsinx=exsinxsinxd(ex)=exsinx+exsinxdx=exsinxexdcosx=exsinxexcosxcosxd(ex)excosxdx=2exsinxexcosx+C


( 7 ) ∫ e − 2 x s i n x 2 d x = − 2 ∫ e − 2 x d c o s x 2 = − 2 ( e − 2 x c o s x 2 − ∫ c o s x 2 d e − 2 x ) = − 2 ( e − 2 x c o s x 2 + 2 ∫ e − 2 x c o s x 2 d x ) = − 2 e − 2 x c o s x 2 − 4 ∫ e − 2 x 2 d ( s i n x 2 ) = − 2 e − 2 x c o s x 2 − 8 ( s i n x 2 − ∫ s i n x 2 d e − 2 x ) = − 2 e − 2 x c o s x 2 − 8 e − 2 x s i n x 2 − 16 ∫ e − 2 x s i n x 2 ∴ ∫ e − 2 x s i n x 2 d x = − 2 17 e − 2 x ( c o s x 2 + 4 s i n x 2 ) + C \begin{aligned} (7) &\int e^{-2x}sin\frac{x}{2}dx\\ &=-2\int e^{-2x}dcos\frac{x}{2}\\ &=-2(e^{-2x}cos\frac{x}{2}-\int cos\frac{x}{2}de^{-2x})\\ &=-2(e^{-2x}cos\frac{x}{2}+2\int e^{-2x} cos\frac{x}{2}dx)\\ &=-2e^{-2x}cos\frac{x}{2}-4\int e^{-2x}2d(sin\frac{x}{2})\\ &=-2e^{-2x}cos\frac{x}{2}-8(sin\frac{x}{2}-\int sin\frac{x}{2}de^{-2x})\\ &=-2e^{-2x}cos\frac{x}{2}-8e^{-2x}sin\frac{x}{2}-16\int e^{-2x}sin\frac{x}{2}\\ &\therefore \int e^{-2x}sin\frac{x}{2}dx=-\frac{2}{17}e^{-2x}(cos\frac{x}{2}+4sin\frac{x}{2})+C \end{aligned} (7)e2xsin2xdx=2e2xdcos2x=2(e2xcos2xcos2xde2x)=2(e2xcos2x+2e2xcos2xdx)=2e2xcos2x4e2x2d(sin2x)=2e2xcos2x8(sin2xsin2xde2x)=2e2xcos2x8e2xsin2x16e2xsin2xe2xsin2xdx=172e2x(cos2x+4sin2x)+C


( 8 ) ∫ x c o s x 2 d x = 2 ∫ x d ( s i n x 2 ) = 2 x s i n x 2 − 2 ∫ s i n x 2 d x = 2 x s i n x 2 + 4 c o s x 2 + C \begin{aligned} (8) &\int xcos\frac{x}{2}dx\\ &=2\int xd(sin\frac{x}{2})\\ &=2xsin\frac{x}{2}-2\int sin\frac{x}{2}dx\\ &=2xsin\frac{x}{2}+4cos\frac{x}{2}+C \end{aligned} (8)xcos2xdx=2xd(sin2x)=2xsin2x2sin2xdx=2xsin2x+4cos2x+C


( 9 ) ∫ x 2 a r c t a n x d x = 1 3 ∫ a r c t a n x d ( x 3 ) = 1 3 x 3 a r c t a n x − 1 3 ∫ x 3 d ( a r c t a n x ) = 1 3 x 3 a r c t a n x − 1 3 ∫ x 3 + x − x 1 + x 2 d x = 1 3 x 3 a r c t a n x − 1 3 ∫ x d x + 1 3 ∫ x d x x 2 + 1 = 1 3 x 3 a r c t a n x − x 2 6 + 1 6 ∫ d ( x 2 + 1 ) x 2 + 1 = 1 3 x 3 a r c t a n x − x 2 6 + l n ( x 2 + 1 ) 6 + C \begin{aligned} (9) &\int x^2arctanxdx\\ &=\frac{1}{3}\int arctanxd(x^3)\\ &=\frac{1}{3}x^3arctanx-\frac{1}{3}\int x^3d(arctanx)\\ &=\frac{1}{3}x^3arctanx-\frac{1}{3}\int \frac{x^3+x-x}{1+x^2}dx\\ &=\frac{1}{3}x^3arctanx-\frac{1}{3}\int xdx+\frac{1}{3}\int \frac{xdx}{x^2+1}\\ &=\frac{1}{3}x^3arctanx-\frac{x^2}{6}+\frac{1}{6}\int \frac{d(x^2+1)}{x^2+1}\\ &=\frac{1}{3}x^3arctanx-\frac{x^2}{6}+\frac{ln(x^2+1)}{6}+C \end{aligned} (9)x2arctanxdx=31arctanxd(x3)=31x3arctanx31x3d(arctanx)=31x3arctanx311+x2x3+xxdx=31x3arctanx31xdx+31x2+1xdx=31x3arctanx6x2+61x2+1d(x2+1)=31x3arctanx6x2+6ln(x2+1)+C


( 10 ) ∫ x t a n 2 x d x = ∫ x ( s e c 2 x − 1 ) d x = ∫ x s e c 2 x d x − ∫ x d x = ∫ x d ( t a n x ) − ∫ x d x = x t a n x − ∫ t a n x d x − 1 2 x 2 = x t a n x + l n ∣ c o s x ∣ − 1 2 x 2 + C \begin{aligned} (10) &\int xtan^2xdx\\ &=\int x(sec^2x-1)dx\\ &=\int xsec^2xdx-\int xdx\\ &=\int xd(tanx) -\int xdx\\ &=xtanx-\int tanxdx-\frac{1}{2}x^2\\ &=xtanx+ln|cosx|-\frac{1}{2}x^2+C \end{aligned} (10)xtan2xdx=x(sec2x1)dx=xsec2xdxxdx=xd(tanx)xdx=xtanxtanxdx21x2=xtanx+lncosx21x2+C


( 11 ) ∫ x 2 c o s x d x = ∫ x 2 d ( s i n x ) = x 2 s i n x − ∫ s i n x d x 2 = x 2 s i n x − 2 ∫ x s i n x d x = x 2 s i n x − 2 ∫ x d ( c o s x ) = x 2 s i n x − 2 ( x c o s x − ∫ c o s x d x ) = x 2 s i n x + 2 x s i n x − 2 s i n x + C \begin{aligned} (11) &\int x^2cosxdx\\ &=\int x^2d(sinx)\\ &=x^2sinx-\int sinxdx^2\\ &=x^2sinx-2\int xsinxdx\\ &=x^2sinx-2\int xd(cosx)\\ &=x^2sinx-2(xcosx-\int cosxdx)\\ &=x^2sinx+2xsinx-2sinx+C \end{aligned} (11)x2cosxdx=x2d(sinx)=x2sinxsinxdx2=x2sinx2xsinxdx=x2sinx2xd(cosx)=x2sinx2(xcosxcosxdx)=x2sinx+2xsinx2sinx+C


( 12 ) ∫ t e − 2 t d x = − 1 2 ∫ t d ( e − 2 t ) = − 1 2 ( t e − 2 t − ∫ e − 2 t d t ) = − 1 2 t e − 2 t − 1 4 e − 2 t + C \begin{aligned} (12) &\int te^{-2t}dx\\ &=-\frac{1}{2}\int td(e^{-2t})\\ &=-\frac{1}{2}(te^{-2t}-\int e^{-2t}dt)\\ &=-\frac{1}{2}te^{-2t}-\frac{1}{4}e^{-2t}+C \end{aligned} (12)te2tdx=21td(e2t)=21(te2te2tdt)=21te2t41e2t+C


( 13 ) ∫ l n 2 x d x = x ( l n x ) 2 − ∫ x d [ ( l n x ) 2 ] = x ( l n x ) 2 − 2 ∫ l n x d x = x ( l n x ) 2 − 2 [ x l n x − ∫ x d ( l n x ) ] = x ( l n x ) 2 − 2 x l n x − 2 x + C \begin{aligned} (13) &\int ln^2xdx\\ &=x(lnx)^2-\int xd[(lnx)^2]\\ &=x(lnx)^2-2\int lnxdx\\ &=x(lnx)^2-2[xlnx-\int xd(lnx)]\\ &=x(lnx)^2-2xlnx-2x+C \end{aligned} (13)ln2xdx=x(lnx)2xd[(lnx)2]=x(lnx)22lnxdx=x(lnx)22[xlnxxd(lnx)]=x(lnx)22xlnx2x+C


( 14 ) ∫ x s i n x c o s x d x = 1 2 ∫ x s i n 2 x d x = − 1 4 ∫ x d ( c o s 2 x ) = − 1 4 x c o s 2 x + 1 4 ∫ c o s 2 x d x = 1 8 s i n 2 x − 1 4 x c o s 2 x + C \begin{aligned} (14) &\int xsinxcosxdx\\ &=\frac{1}{2}\int xsin2xdx\\ &=-\frac{1}{4}\int xd(cos2x)\\ &=-\frac{1}{4}xcos2x+\frac{1}{4}\int cos2xdx\\ &=\frac{1}{8}sin2x-\frac{1}{4}xcos2x+C \end{aligned} (14)xsinxcosxdx=21xsin2xdx=41xd(cos2x)=41xcos2x+41cos2xdx=81sin2x41xcos2x+C


( 15 ) ∫ x 2 c o s 2 x 2 d x = 1 2 ∫ x 2 ( c o s x + 1 ) d x = 1 2 ∫ x 2 c o s x d x + 1 2 ∫ x 2 d x = x 3 6 + 1 2 ∫ x 2 d ( s i n x ) = x 3 6 + 1 2 [ x 2 s i n x − ∫ s i n x d ( x 2 ) ] = x 3 6 + x 2 s i n x 2 − ∫ x s i n x d x = x 3 6 + x 2 s i n x 2 + ∫ x d ( c o s x ) = x 3 6 + x 2 s i n x 2 + x c o s x − ∫ c o s x d x = x 3 6 + x 2 s i n x 2 + x c o s x − s i n x + C \begin{aligned} (15) &\int x^2cos^2\frac{x}{2}dx\\ &=\frac{1}{2}\int x^2(cosx+1)dx\\ &=\frac{1}{2}\int x^2cosxdx+\frac{1}{2}\int x^2dx\\ &=\frac{x^3}{6}+\frac{1}{2}\int x^2d(sinx)\\ &=\frac{x^3}{6}+\frac{1}{2}[x^2sinx-\int sinxd(x^2)]\\ &=\frac{x^3}{6}+\frac{x^2sinx}{2}-\int xsinxdx\\ &=\frac{x^3}{6}+\frac{x^2sinx}{2}+\int xd(cosx)\\ &=\frac{x^3}{6}+\frac{x^2sinx}{2}+xcosx-\int cosxdx\\ &=\frac{x^3}{6}+\frac{x^2sinx}{2}+xcosx-sinx+C \end{aligned} (15)x2cos22xdx=21x2(cosx+1)dx=21x2cosxdx+21x2dx=6x3+21x2d(sinx)=6x3+21[x2sinxsinxd(x2)]=6x3+2x2sinxxsinxdx=6x3+2x2sinx+xd(cosx)=6x3+2x2sinx+xcosxcosxdx=6x3+2x2sinx+xcosxsinx+C


( 16 ) ∫ x l n ( x − 1 ) d x = 1 2 ∫ l n ( x − 1 ) d ( x 2 ) = 1 2 x 2 l n ( x − 1 ) − 1 2 ∫ x 2 d [ l n ( x − 1 ) ] = 1 2 x 2 l n ( x − 1 ) − 1 2 ∫ x 2 x − 1 d x = 1 2 x 2 l n ( x − 1 ) − 1 2 ∫ x 2 − 1 + 1 x − 1 d x = 1 2 x 2 l n ( x − 1 ) − 1 2 ∫ ( x + 1 ) d x − 1 2 ∫ d x x − 1 = 1 2 x 2 l n ( x − 1 ) − 1 4 ( x + 1 ) 2 − l n ∣ x − 1 ∣ 2 + C \begin{aligned} (16) &\int xln(x-1)dx\\ &=\frac{1}{2}\int ln(x-1)d(x^2)\\ &=\frac{1}{2}x^2ln(x-1)-\frac{1}{2}\int x^2d[ln(x-1)]\\ &=\frac{1}{2}x^2ln(x-1)-\frac{1}{2}\int \frac{x^2}{x-1}dx\\ &=\frac{1}{2}x^2ln(x-1)-\frac{1}{2}\int \frac{x^2-1+1}{x-1}dx\\ &=\frac{1}{2}x^2ln(x-1)-\frac{1}{2}\int (x+1)dx-\frac{1}{2}\int \frac{dx}{x-1}\\ &=\frac{1}{2}x^2ln(x-1)-\frac{1}{4}(x+1)^2-\frac{ln|x-1|}{2}+C \end{aligned} (16)xln(x1)dx=21ln(x1)d(x2)=21x2ln(x1)21x2d[ln(x1)]=21x2ln(x1)21x1x2dx=21x2ln(x1)21x1x21+1dx=21x2ln(x1)21(x+1)dx21x1dx=21x2ln(x1)41(x+1)22lnx1∣+C


( 17 ) ∫ ( x 2 − 1 ) s i n 2 x d x = ∫ x 2 s i n 2 x d x − ∫ s i n 2 x d x = − 1 2 ∫ x 2 d ( c o s 2 x ) + 1 2 c o s 2 x = 1 2 c o s 2 x − 1 2 x 2 c o s 2 x + 1 2 ∫ c o s 2 x d ( x 2 ) = 1 2 c o s 2 x − 1 2 x 2 c o s 2 x + ∫ x c o s 2 x d x = 1 2 c o s 2 x − 1 2 x 2 c o s 2 x + 1 2 ∫ x d ( s i n 2 x ) = 1 2 c o s 2 x − 1 2 x 2 c o s 2 x + 1 2 x s i n 2 x − 1 2 ∫ s i n 2 x d x = 1 2 c o s 2 x − 1 2 x 2 c o s 2 x + 1 2 x s i n 2 x + 1 4 c o s 2 x + C = ( 3 4 − 1 2 x 2 ) c o s 2 x + 1 2 x s i n 2 x + C \begin{aligned} (17) &\int (x^2-1)sin2xdx\\ &=\int x^2sin2xdx-\int sin2xdx\\ &=-\frac{1}{2}\int x^2d(cos2x)+\frac{1}{2}cos2x\\ &=\frac{1}{2}cos2x-\frac{1}{2}x^2cos2x+\frac{1}{2}\int cos2xd(x^2)\\ &=\frac{1}{2}cos2x-\frac{1}{2}x^2cos2x+\int xcos2xdx\\ &=\frac{1}{2}cos2x-\frac{1}{2}x^2cos2x+\frac{1}{2}\int xd(sin2x)\\ &=\frac{1}{2}cos2x-\frac{1}{2}x^2cos2x+\frac{1}{2}xsin2x-\frac{1}{2}\int sin2xdx\\ &=\frac{1}{2}cos2x-\frac{1}{2}x^2cos2x+\frac{1}{2}xsin2x+\frac{1}{4}cos2x+C\\ &=(\frac{3}{4}-\frac{1}{2}x^2)cos2x+\frac{1}{2}xsin2x+C \end{aligned} (17)(x21)sin2xdx=x2sin2xdxsin2xdx=21x2d(cos2x)+21cos2x=21cos2x21x2cos2x+21cos2xd(x2)=21cos2x21x2cos2x+xcos2xdx=21cos2x21x2cos2x+21xd(sin2x)=21cos2x21x2cos2x+21xsin2x21sin2xdx=21cos2x21x2cos2x+21xsin2x+41cos2x+C=(4321x2)cos2x+21xsin2x+C


( 18 ) ∫ l n 3 x x 2 d x = − ∫ ( l n x ) 3 d ( 1 x ) = − ( l n x ) 3 x + ∫ 1 x d [ ( l n x ) 3 ] = − ( l n x ) 3 x + 3 ∫ ( l n x ) 2 x 2 d x = − ( l n x ) 3 x − 3 ∫ ( l n x ) 2 d ( 1 x ) = − ( l n x ) 3 x − 3 ( l n x ) 3 x + 3 ∫ d [ ( l n x ) 2 ] x = − ( l n x ) 3 x − 3 ( l n x ) 3 x + 6 ∫ l n x x 2 d x = − ( l n x ) 3 x − 3 ( l n x ) 3 x − 6 ∫ l n x d ( 1 x ) = − ( l n x ) 3 x − 3 ( l n x ) 3 x − 6 l n x x + 6 ∫ d ( l n x ) x = − 1 x [ 6 l n x + 3 ( l n x ) 2 + ( l n x ) 3 − 6 ] + C \begin{aligned} (18) &\int \frac{ln^3x}{x^2}dx\\ &=-\int (lnx)^3d(\frac{1}{x})\\ &=-\frac{(lnx)^3}{x}+\int \frac{1}{x}d[(lnx)^3]\\ &=-\frac{(lnx)^3}{x}+3\int \frac{(lnx)^2}{x^2}dx\\ &=-\frac{(lnx)^3}{x}-3\int (lnx)^2d(\frac{1}{x})\\ &=-\frac{(lnx)^3}{x}-\frac{3(lnx)^3}{x}+3\int \frac{d[(lnx)^2]}{x}\\ &=-\frac{(lnx)^3}{x}-\frac{3(lnx)^3}{x}+6\int \frac{lnx}{x^2}dx\\ &=-\frac{(lnx)^3}{x}-\frac{3(lnx)^3}{x}-6\int lnxd(\frac{1}{x})\\ &=-\frac{(lnx)^3}{x}-\frac{3(lnx)^3}{x}-\frac{6lnx}{x}+6\int \frac{d(lnx)}{x}\\ &=-\frac{1}{x}[6lnx+3(lnx)^2+(lnx)^3-6]+C \end{aligned} (18)x2ln3xdx=(lnx)3d(x1)=x(lnx)3+x1d[(lnx)3]=x(lnx)3+3x2(lnx)2dx=x(lnx)33(lnx)2d(x1)=x(lnx)3x3(lnx)3+3xd[(lnx)2]=x(lnx)3x3(lnx)3+6x2lnxdx=x(lnx)3x3(lnx)36lnxd(x1)=x(lnx)3x3(lnx)3x6lnx+6xd(lnx)=x1[6lnx+3(lnx)2+(lnx)36]+C


( 19 ) ∫ e 3 x d x ( 令 t = 3 3 ) = ∫ e t d t 3 = 3 ∫ e t t 2 d t = 3 ∫ t 2 d e t = 3 t 2 e t − 3 ∫ e t d t 2 = 3 t 2 e t − 6 ∫ t e t d t = 3 t 2 e t − 6 ∫ t d e t = 3 t 2 e t − 6 t e t + 6 ∫ e t d t = 3 x 2 3 e x 3 − 2 x 3 e x 3 + 2 e x 3 + C \begin{aligned} (19) &\int e^{3\sqrt{x}}dx\\ &(令 t=\sqrt[3]{3})\\ &=\int e^tdt^3\\ &=3\int e^tt^2dt\\ &=3\int t^2de^t\\ &=3t^2e^t-3\int e^tdt^2\\ &=3t^2e^t-6\int te^tdt\\ &=3t^2e^t-6\int tde^t\\ &=3t^2e^t-6te^t+6\int e^tdt\\ &=3x^{\frac{2}{3}}e^{\sqrt[3]{x}}-2\sqrt[3]{x}e^{\sqrt[3]{x}}+2e^{\sqrt[3]{x}}+C \end{aligned} (19)e3x dx(t=33 )=etdt3=3ett2dt=3t2det=3t2et3etdt2=3t2et6tetdt=3t2et6tdet=3t2et6tet+6etdt=3x32e3x 23x e3x +2e3x +C


( 20 ) ∫ c o s l n x d x = x c o s ( l n x ) − ∫ x d [ c o s ( l n x ) ] = x c o s ( l n x ) + ∫ s i n ( l n x ) d x = x c o s ( l n x ) + x s i n ( l n x ) − ∫ x d [ s i n ( l n x ) ] = x c o s ( l n x ) + x s i n ( l n x ) − ∫ c o s ( l n x ) d x ∴ ∫ c o s ( l n x ) d x = x c o s ( l n x ) + x s i n ( l n x ) 2 + C \begin{aligned} (20) &\int coslnxdx\\ &=xcos(lnx)-\int xd[cos(lnx)]\\ &=xcos(lnx)+\int sin(lnx)dx\\ &=xcos(lnx)+xsin(lnx)-\int xd[sin(lnx)]\\ &=xcos(lnx)+xsin(lnx)-\int cos(lnx)dx\\ &\therefore \int cos(lnx)dx=\frac{xcos(lnx)+xsin(lnx)}{2}+C \end{aligned} (20)coslnxdx=xcos(lnx)xd[cos(lnx)]=xcos(lnx)+sin(lnx)dx=xcos(lnx)+xsin(lnx)xd[sin(lnx)]=xcos(lnx)+xsin(lnx)cos(lnx)dxcos(lnx)dx=2xcos(lnx)+xsin(lnx)+C


学习资料:《高等数学(第六版)》 ,同济大学数学系 编

感谢您的关注,更欢迎您的批评和指正!


http://www.kler.cn/a/548709.html

相关文章:

  • 大模型开发实战篇5:多模态--文生图模型API
  • Flask中获取请求参数的一些方式总结
  • DeepSeek在linux下的安装部署与应用测试
  • 基于Python的Flask微博话题舆情分析可视化系统
  • Dify+Ollama+DeepSeek部署本地大模型+知识库搭建
  • Typescript class中的方法和函数类型的属性有何不同?
  • 每日一题——47. 全排列 II
  • Linux系统Centos安装部署nginx代理
  • 数字内容体验未来趋势:五大平台横向对比与深度解析
  • 惠普HP Color LaserJet CP1215/1210彩色打印机打印校准方法
  • . Unable to find a @SpringBootConfiguration(默认软件包中的 Spring Boot 应用程序)
  • AI大模型学习(二): LangChain(一)
  • SpringBoot+数据可视化的奶茶点单购物平台(程序+论文+讲解+安装+调试+售后)
  • GMSL 实例1:当 MAX96717 遇上 MAX96724,打通 Camera 视频数据传输
  • 运维脚本——2.备份与恢复
  • YOLO11环境搭建CUDA12.6
  • AI大模型技术基础入门
  • [NKU]C++基础课(二)--- externC、强制类型转换、类与对象、面向对象程序设计语言、对象创建和使用、类的定义、封装
  • 常用查找算法整理(顺序查找、二分查找、哈希查找、二叉排序树查找、平衡二叉树查找、红黑树查找、B树和B+树查找、分块查找)
  • TCP/UDP 简介,三次握手与四次挥手