当前位置: 首页 > article >正文

基于暗通道先验的图像去雾算法解析与实现

一、算法背景

何凯明团队于2009年提出的暗通道先验去雾算法《single image haze removal using dark channel prior》,通过统计发现:在无雾图像的局部区域中,至少存在一个颜色通道的像素值趋近于零。这一发现为图像去雾提供了重要的理论依据,其数学模型可表示为:

I ( x ) = J ( x ) t ( x ) + A ( 1 − t ( x ) ) I(x) = J(x)t(x) + A(1 - t(x)) I(x)=J(x)t(x)+A(1t(x))

其中:

  • I ( x ) I(x) I(x):观测到的有雾图像
  • J ( x ) J(x) J(x):待恢复的无雾图像
  • t ( x ) t(x) t(x):透射率
  • A A A:全局大气光值
    在这里插入图片描述

二、算法原理

1. 暗通道计算

通过取RGB三通道最小值并进行形态学腐蚀操作:

def dark_channel(img, size=15):
    r, g, b = cv2.split(img)
    min_img = cv2.min(r, cv2.min(g, b))
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
    return cv2.erode(min_img, kernel)

2. 大气光估计

选取图像中最亮像素的0.1%作为大气光值:

def get_atmo(img, percent=0.001):
    mean_perpix = np.mean(img, axis=2).reshape(-1)
    mean_topper = mean_perpix[:int(img.shape[0] * img.shape[1] * percent)]
    return np.mean(mean_topper)

3. 透射率估计

t ( x ) = 1 − ω ⋅ d a r k _ c h a n n e l ( I A ) t(x) = 1 - \omega \cdot dark\_channel\left(\frac{I}{A}\right) t(x)=1ωdark_channel(AI)

def get_trans(img, atom, w=0.95):
    x = img / atom
    return 1 - w * dark_channel(x, 7)

4. 引导滤波优化

使用灰度图作为引导图像进行透射率优化:

# 引导滤波
def guided_filter(p, i, r, e):
    """
    :param p: input image
    :param i: guidance image
    :param r: radius
    :param e: regularization
    :return: filtering output q
    """
    # 1
    mean_I = cv2.boxFilter(i, cv2.CV_64F, (r, r))
    mean_p = cv2.boxFilter(p, cv2.CV_64F, (r, r))
    corr_I = cv2.boxFilter(i * i, cv2.CV_64F, (r, r))
    corr_Ip = cv2.boxFilter(i * p, cv2.CV_64F, (r, r))
    # 2
    var_I = corr_I - mean_I * mean_I
    cov_Ip = corr_Ip - mean_I * mean_p
    # 3
    a = cov_Ip / (var_I + e)
    b = mean_p - a * mean_I
    # 4
    mean_a = cv2.boxFilter(a, cv2.CV_64F, (r, r))
    mean_b = cv2.boxFilter(b, cv2.CV_64F, (r, r))
    # 5
    q = mean_a * i + mean_b
    return q

三、完整实现代码

import cv2
import numpy as np
import os


# 计算雾化图像的暗通道
def dark_channel(img, size=15):
    r, g, b = cv2.split(img)
    min_img = cv2.min(r, cv2.min(g, b))  # 取最暗通道
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
    dc_img = cv2.erode(min_img, kernel)
    return dc_img


# 估计全局大气光值
def get_atmo(img, percent=0.001):
    mean_perpix = np.mean(img, axis=2).reshape(-1)
    mean_topper = mean_perpix[:int(img.shape[0] * img.shape[1] * percent)]
    return np.mean(mean_topper)


# 估算透射率图
def get_trans(img, atom, w=0.95):
    x = img / atom
    t = 1 - w * dark_channel(x, 15)
    return t


# 引导滤波
def guided_filter(p, i, r, e):
    """
    :param p: input image
    :param i: guidance image
    :param r: radius
    :param e: regularization
    :return: filtering output q
    """
    # 1
    mean_I = cv2.boxFilter(i, cv2.CV_64F, (r, r))
    mean_p = cv2.boxFilter(p, cv2.CV_64F, (r, r))
    corr_I = cv2.boxFilter(i * i, cv2.CV_64F, (r, r))
    corr_Ip = cv2.boxFilter(i * p, cv2.CV_64F, (r, r))
    # 2
    var_I = corr_I - mean_I * mean_I
    cov_Ip = corr_Ip - mean_I * mean_p
    # 3
    a = cov_Ip / (var_I + e)
    b = mean_p - a * mean_I
    # 4
    mean_a = cv2.boxFilter(a, cv2.CV_64F, (r, r))
    mean_b = cv2.boxFilter(b, cv2.CV_64F, (r, r))
    # 5
    q = mean_a * i + mean_b
    return q


def dehaze(im):
    img = im.astype('float64') / 255
    img_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY).astype('float64') / 255
    atom = get_atmo(img)
    trans = get_trans(img, atom)
    trans_guided = guided_filter(trans, img_gray, 20, 0.0001)
    trans_guided = cv2.max(trans_guided, 0.25)
    result = np.empty_like(img)
    for i in range(3):
        result[:, :, i] = (img[:, :, i] - atom) / trans_guided + atom
    return result * 255


if __name__ == '__main__':
    image_path= 'images/img.png'
    im = cv2.imread(image_path)
    img = im.astype('float64') / 255
    img_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY).astype('float64') / 255
    atom = get_atmo(img)
    trans = get_trans(img, atom)
    trans_guided = guided_filter(trans, img_gray, 10, 0.0001)
    trans_guided = cv2.max(trans_guided, 0.25)
    result = np.empty_like(img)
    for i in range(3):
        result[:, :, i] = (img[:, :, i] - atom) / trans_guided + atom
    cv2.imwrite('images/img.png', result * 255)



http://www.kler.cn/a/551981.html

相关文章:

  • 百度地图接入DeepSeek技术解析:AI如何重塑地图搜索体验?
  • 远离手机APP——数字排毒,回归生活本真
  • 深度学习-1.简介
  • 基于指纹识别技术的考勤打卡设计与实现(论文+源码)
  • Day4:强化学习之Qlearning走迷宫
  • WPF的Prism框架的使用
  • XML Schema anyAttribute 元素详解
  • cmake:定位Qt的ui文件
  • 【JavaEE进阶】MyBatis通过注解实现增删改查
  • 在 Visual Studio 中使用 C++ 利用 dump 文件查找问题原因和崩溃点
  • 【python】4_异常
  • [LeetCode力扣hot100]-链表
  • 扩散模型中的马尔可夫链设计演进:从DDPM到Stable Diffusion全解析
  • labelimg的xml文件转labelme的json文件
  • Android ListPreference使用
  • 图床 PicGo+GitHub+Typora的下载安装与使用
  • 基于 Spring Cloud + Sentinel 的全面流量治理方案
  • fatal: Out of memory, malloc failed (tried to allocate 524288000 bytes)
  • 《DeepSeek 一站式工作生活 AI 助手》
  • 提升接口性能之缓存