当前位置: 首页 > article >正文

python环境的yolov11.rknn物体检测

1.首先是我手里生成的一个yolo11的.rknn模型:

2.比对一下yolov5的模型:

 

2.1 yolov5模型的后期处理:

    outputs = rknn.inference(inputs=[img2], data_format=['nhwc'])
    np.save('./onnx_yolov5_0.npy', outputs[0])
    np.save('./onnx_yolov5_1.npy', outputs[1])
    np.save('./onnx_yolov5_2.npy', outputs[2])
    print('done')

    # post process
    input0_data = outputs[0]
    input1_data = outputs[1]
    input2_data = outputs[2]

    input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))
    input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))
    input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))

    input_data = list()
    input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
    input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
    input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))

然后:

def yolov5_post_process(input_data):
    masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
    anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
               [59, 119], [116, 90], [156, 198], [373, 326]]

    boxes, classes, scores = [], [], []
    for input, mask in zip(input_data, masks):
        b, c, s = process(input, mask, anchors)
        b, c, s = filter_boxes(b, c, s)
        boxes.append(b)
        classes.append(c)
        scores.append(s)

然后:

def process(input, mask, anchors):

    anchors = [anchors[i] for i in mask]
    grid_h, grid_w = map(int, input.shape[0:2])

    box_confidence = input[..., 4]
    box_confidence = np.expand_dims(box_confidence, axis=-1)

    box_class_probs = input[..., 5:]

    box_xy = input[..., :2]*2 - 0.5

    col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
    row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
    col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
    row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
    grid = np.concatenate((col, row), axis=-1)
    box_xy += grid
    box_xy *= int(IMG_SIZE/grid_h)

    box_wh = pow(input[..., 2:4]*2, 2)
    box_wh = box_wh * anchors

    box = np.concatenate((box_xy, box_wh), axis=-1)

    return box, box_confidence, box_class_probs

3.修改1 - 基于昨天在宿主机上成功执行的onnx代码:

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import os
import sys
from math import exp
import cv2
import numpy as np

ROOT = os.getcwd()
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))

RKNN_MODEL = r'/home/firefly/app/models/sim_moonpie-640-640_rk3588.rknn'
IMG_PATH = '/home/firefly/app/images/cake26.jpg'
QUANTIZE_ON = False

CLASSES = ['moonpie', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
         'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
         'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
         'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
         'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
         'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
         'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
         'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
         'hair drier', 'toothbrush', 'moonpie']

meshgrid = []

class_num = len(CLASSES)
headNum = 3
strides = [8, 16, 32]
mapSize = [[80, 80], [40, 40], [20, 20]]
nmsThresh = 0.45
objectThresh = 0.5

input_imgH = 640
input_imgW = 640

from rknn.api import RKNN 
def rk3588_detect(model, pic, classes):
    rknn = RKNN(verbose=True)
    '''
    # model config
    rknn.config(mean_values=[[0, 0, 0]],
            std_values=[[255,255,255]],
            quant_img_RGB2BGR=False,
            target_platform='rk3588')
    '''
    rknn.load_rknn(path=model)
    rknn.init_runtime(target="rk3588", core_mask=RKNN.NPU_CORE_AUTO)
    outputs = rknn.inference(inputs=[pic], data_format=['nhwc'])
    return outputs

class DetectBox:
    def __init__(self, classId, score, xmin, ymin, xmax, ymax):
        self.classId = classId
        self.score = score
        self.xmin = xmin
        self.ymin = ymin
        self.xmax = xmax
        self.ymax = ymax

class YOLOV11DetectObj:
    def __init__(self):
        pass

    def GenerateMeshgrid(self):
        for index in range(headNum):
            for i in range(mapSize[index][0]):
                for j in range(mapSize[index][1]):
                    meshgrid.append(j + 0.5)
                    meshgrid.append(i + 0.5)


    def IOU(self, xmin1, ymin1, xmax1, ymax1, xmin2, ymin2, xmax2, ymax2):
        xmin = max(xmin1, xmin2)
        ymin = max(ymin1, ymin2)
        xmax = min(xmax1, xmax2)
        ymax = min(ymax1, ymax2)

        innerWidth = xmax - xmin
        innerHeight = ymax - ymin

        innerWidth = innerWidth if innerWidth > 0 else 0
        innerHeight = innerHeight if innerHeight > 0 else 0

        innerArea = innerWidth * innerHeight

        area1 = (xmax1 - xmin1) * (ymax1 - ymin1)
        area2 = (xmax2 - xmin2) * (ymax2 - ymin2)

        total = area1 + area2 - innerArea

        return innerArea / total


    def NMS(self, detectResult):
        predBoxs = []

        sort_detectboxs = sorted(detectResult, key=lambda x: x.score, reverse=True)

        for i in range(len(sort_detectboxs)):
            xmin1 = sort_detectboxs[i].xmin
            ymin1 = sort_detectboxs[i].ymin
            xmax1 = sort_detectboxs[i].xmax
            ymax1 = sort_detectboxs[i].ymax
            classId = sort_detectboxs[i].classId

            if sort_detectboxs[i].classId != -1:
                predBoxs.append(sort_detectboxs[i])
                for j in range(i + 1, len(sort_detectboxs), 1):
                    if classId == sort_detectboxs[j].classId:
                        xmin2 = sort_detectboxs[j].xmin
                        ymin2 = sort_detectboxs[j].ymin
                        xmax2 = sort_detectboxs[j].xmax
                        ymax2 = sort_detectboxs[j].ymax
                        iou = IOU(xmin1, ymin1, xmax1, ymax1, xmin2, ymin2, xmax2, ymax2)
                        if iou > nmsThresh:
                            sort_detectboxs[j].classId = -1
        return predBoxs


    def sigmoid(self, x):
        return 1 / (1 + exp(-x))


    def postprocess(self, out, img_h, img_w):
        print('postprocess ... ')

        detectResult = []
        output = []
        for i in range(len(out)):
            print(out[i].shape)
            output.append(out[i].reshape((-1)))

        scale_h = img_h / input_imgH
        scale_w = img_w / input_imgW

        gridIndex = -2
        cls_index = 0
        cls_max = 0

        for index in range(headNum):
            reg = output[index * 2 + 0]
            cls = output[index * 2 + 1]

            for h in range(mapSize[index][0]):
                for w in range(mapSize[index][1]):
                    gridIndex += 2

                    if 1 == class_num:
                        cls_max = sigmoid(cls[0 * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w])
                        cls_index = 0
                    else:
                        for cl in range(class_num):
                            cls_val = cls[cl * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w]
                            if 0 == cl:
                                cls_max = cls_val
                                cls_index = cl
                            else:
                                if cls_val > cls_max:
                                    cls_max = cls_val
                                    cls_index = cl
                        cls_max = self.sigmoid(cls_max)

                    if cls_max > objectThresh:
                        regdfl = []
                        for lc in range(4):
                            sfsum = 0
                            locval = 0
                            for df in range(16):
                                temp = exp(reg[((lc * 16) + df) * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w])
                                reg[((lc * 16) + df) * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w] = temp
                                sfsum += temp

                            for df in range(16):
                                sfval = reg[((lc * 16) + df) * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w] / sfsum
                                locval += sfval * df
                            regdfl.append(locval)

                        x1 = (meshgrid[gridIndex + 0] - regdfl[0]) * strides[index]
                        y1 = (meshgrid[gridIndex + 1] - regdfl[1]) * strides[index]
                        x2 = (meshgrid[gridIndex + 0] + regdfl[2]) * strides[index]
                        y2 = (meshgrid[gridIndex + 1] + regdfl[3]) * strides[index]

                        xmin = x1 * scale_w
                        ymin = y1 * scale_h
                        xmax = x2 * scale_w
                        ymax = y2 * scale_h

                        xmin = xmin if xmin > 0 else 0
                        ymin = ymin if ymin > 0 else 0
                        xmax = xmax if xmax < img_w else img_w
                        ymax = ymax if ymax < img_h else img_h

                        box = DetectBox(cls_index, cls_max, xmin, ymin, xmax, ymax)
                        detectResult.append(box)
        # NMS
        print('detectResult:', len(detectResult))
        predBox = self.NMS(detectResult)

        return predBox


    def precess_image(self, img_src, resize_w, resize_h):
        print(f'{type(img_src)}')
        image = cv2.resize(img_src, (resize_w, resize_h), interpolation=cv2.INTER_LINEAR)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        image = image.astype(np.float32)
        image /= 255.0

        return image


    def detect(self, img_path):
        self.GenerateMeshgrid()

        orig = cv2.imread(img_path)
        if orig is None:
            print(f"无法读取图像: {img_path}")
            return
        img_h, img_w = orig.shape[:2]
        image = self.precess_image(orig, input_imgW, input_imgH)

        image = image.transpose((2, 0, 1))
        image = np.expand_dims(image, axis=0)

        #image = np.ones((1, 3, 640, 640), dtype=np.uint8)
        # print(image.shape)

        #ort_session = ort.InferenceSession(ONNX_MODEL)
        #pred_results = (ort_session.run(None, {'data': image}))
        pred_results = rk3588_detect(RKNN_MODEL, image, CLASSES)

        out = []
        for i in range(len(pred_results)):
            out.append(pred_results[i])
        predbox = self.postprocess(out, img_h, img_w)

        print('obj num is :', len(predbox))

        for i in range(len(predbox)):
            xmin = int(predbox[i].xmin)
            ymin = int(predbox[i].ymin)
            xmax = int(predbox[i].xmax)
            ymax = int(predbox[i].ymax)
            classId = predbox[i].classId
            score = predbox[i].score

            cv2.rectangle(orig, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
            ptext = (xmin, ymin)
            title = CLASSES[classId] + "%.2f" % score
            cv2.putText(orig, title, ptext, cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2, cv2.LINE_AA)

        cv2.imwrite('./test_onnx_result.jpg', orig)


if __name__ == '__main__':
    print('This is main ....')
    img_path = IMG_PATH
    obj = YOLOV11DetectObj()
    obj.detect(img_path)

输出不对:

firefly@firefly:~/app/test$ python3 ./detect_rk3588.py
This is main ....
<class 'numpy.ndarray'>
I rknn-toolkit2 version: 2.3.0
I target set by user is: rk3588
postprocess ... 
(1, 64, 80, 80)
(1, 81, 80, 80)
(1, 64, 40, 40)
(1, 81, 40, 40)
(1, 64, 20, 20)
(1, 81, 20, 20)
detectResult: 0
obj num is : 0 

4.修改2 - 基于yolov5.rknn代码

4.1 似乎有如下映射关系:

似乎:yolo11.output5 == yolo5.output2,
           yolo11.output3 == yolo5.output1,
           yolo11.output1 == yolo5.output

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import os
import sys
import urllib
import traceback
import time
import numpy as np
import cv2
from rknn.api import RKNN

ROOT = os.getcwd()
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))

# Model from https://github.com/airockchip/rknn_model_zoo  yolov11->selftrained. yolo11s?
ONNX_MODEL = r'/home/firefly/app/models/yolo11_selfgen.onnx'
RKNN_MODEL = r'/home/firefly/app/models/new_moonpie_yolo11_640x640.rknn'
IMG_PATH = r'/home/firefly/app/images/cake26.jpg'
QUANTIZE_ON = True
DATASET=r'./dataset.txt'

CLASSES = ['moonpie', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
         'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
         'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
         'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
         'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
         'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
         'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
         'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
         'hair drier', 'toothbrush']

meshgrid = []

class_num = len(CLASSES)
headNum = 3
strides = [8, 16, 32]
mapSize = [[80, 80], [40, 40], [20, 20]]
input_imgH = 640
input_imgW = 640
IMG_SIZE = input_imgH
QUANTIZE_ON = True

OBJ_THRESH = 0.25
NMS_THRESH = 0.45

def xywh2xyxy(x):
    # Convert [x, y, w, h] to [x1, y1, x2, y2]
    y = np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y


def process(input, mask, anchors):

    anchors = [anchors[i] for i in mask]
    grid_h, grid_w = map(int, input.shape[0:2])

    box_confidence = input[..., 4]
    box_confidence = np.expand_dims(box_confidence, axis=-1)

    box_class_probs = input[..., 5:]

    box_xy = input[..., :2]*2 - 0.5

    col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
    row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
    col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
    row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
    grid = np.concatenate((col, row), axis=-1)
    box_xy += grid
    box_xy *= int(IMG_SIZE/grid_h)

    box_wh = pow(input[..., 2:4]*2, 2)
    box_wh = box_wh * anchors

    box = np.concatenate((box_xy, box_wh), axis=-1)

    return box, box_confidence, box_class_probs


def filter_boxes(boxes, box_confidences, box_class_probs):
    """Filter boxes with box threshold. It's a bit different with origin yolov5 post process!

    # Arguments
        boxes: ndarray, boxes of objects.
        box_confidences: ndarray, confidences of objects.
        box_class_probs: ndarray, class_probs of objects.

    # Returns
        boxes: ndarray, filtered boxes.
        classes: ndarray, classes for boxes.
        scores: ndarray, scores for boxes.
    """
    boxes = boxes.reshape(-1, 4)
    box_confidences = box_confidences.reshape(-1)
    box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1])

    _box_pos = np.where(box_confidences >= OBJ_THRESH)
    boxes = boxes[_box_pos]
    box_confidences = box_confidences[_box_pos]
    box_class_probs = box_class_probs[_box_pos]

    class_max_score = np.max(box_class_probs, axis=-1)
    classes = np.argmax(box_class_probs, axis=-1)
    _class_pos = np.where(class_max_score >= OBJ_THRESH)

    boxes = boxes[_class_pos]
    classes = classes[_class_pos]
    scores = (class_max_score* box_confidences)[_class_pos]

    return boxes, classes, scores


def nms_boxes(boxes, scores):
    """Suppress non-maximal boxes.

    # Arguments
        boxes: ndarray, boxes of objects.
        scores: ndarray, scores of objects.

    # Returns
        keep: ndarray, index of effective boxes.
    """
    x = boxes[:, 0]
    y = boxes[:, 1]
    w = boxes[:, 2] - boxes[:, 0]
    h = boxes[:, 3] - boxes[:, 1]

    areas = w * h
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)

        xx1 = np.maximum(x[i], x[order[1:]])
        yy1 = np.maximum(y[i], y[order[1:]])
        xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
        yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])

        w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
        h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
        inter = w1 * h1

        ovr = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(ovr <= NMS_THRESH)[0]
        order = order[inds + 1]
    keep = np.array(keep)
    return keep


def yolov5_post_process(input_data):
    masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
    anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
               [59, 119], [116, 90], [156, 198], [373, 326]]

    boxes, classes, scores = [], [], []
    for input, mask in zip(input_data, masks):
        b, c, s = process(input, mask, anchors)
        b, c, s = filter_boxes(b, c, s)
        boxes.append(b)
        classes.append(c)
        scores.append(s)

    boxes = np.concatenate(boxes)
    boxes = xywh2xyxy(boxes)
    classes = np.concatenate(classes)
    scores = np.concatenate(scores)

    nboxes, nclasses, nscores = [], [], []
    for c in set(classes):
        inds = np.where(classes == c)
        b = boxes[inds]
        c = classes[inds]
        s = scores[inds]

        keep = nms_boxes(b, s)

        nboxes.append(b[keep])
        nclasses.append(c[keep])
        nscores.append(s[keep])

    if not nclasses and not nscores:
        return None, None, None

    boxes = np.concatenate(nboxes)
    classes = np.concatenate(nclasses)
    scores = np.concatenate(nscores)

    return boxes, classes, scores


def draw(image, boxes, scores, classes):
    """Draw the boxes on the image.

    # Argument:
        image: original image.
        boxes: ndarray, boxes of objects.
        classes: ndarray, classes of objects.
        scores: ndarray, scores of objects.
        all_classes: all classes name.
    """
    print("{:^12} {:^12}  {}".format('class', 'score', 'xmin, ymin, xmax, ymax'))
    print('-' * 50)
    for box, score, cl in zip(boxes, scores, classes):
        top, left, right, bottom = box
        top = int(top)
        left = int(left)
        right = int(right)
        bottom = int(bottom)

        cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
        cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
                    (top, left - 6),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.6, (0, 0, 255), 2)

        print("{:^12} {:^12.3f} [{:>4}, {:>4}, {:>4}, {:>4}]".format(CLASSES[cl], score, top, left, right, bottom))

def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, ratio, (dw, dh)

def detect_on_ubuntu(onnx_model_path=ONNX_MODEL, rknn_path=RKNN_MODEL, image_path=IMG_PATH, classes=CLASSES):
    # Create RKNN object
    rknn = RKNN(verbose=True)

    # pre-process config
    print('--> Config model')
    rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform='rk3588')
    print('done')

    # Load ONNX model
    print('--> Loading model')
    ret = rknn.load_onnx(model=onnx_model_path)
    if ret != 0:
        print('Load model failed!')
        exit(ret)
    print('done')

    # Build model
    print('--> Building model')
    ret = rknn.build(do_quantization=QUANTIZE_ON, dataset=DATASET)
    if ret != 0:
        print('Build model failed!')
        exit(ret)
    print('done')

    # Export RKNN model
    print('--> Export rknn model')
    ret = rknn.export_rknn(rknn_path)
    if ret != 0:
        print('Export rknn model failed!')
        exit(ret)
    print('done')

    # Init runtime environment
    print('--> Init runtime environment')
    ret = rknn.init_runtime()
    if ret != 0:
        print('Init runtime environment failed!')
        exit(ret)
    print('done')

    # Set inputs
    img = cv2.imread(image_path)
    # img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))

    # Inference
    print('--> Running model')
    img2 = np.expand_dims(img, 0)
    np.save('./raw_yolov11_in.npy', [img2])
    outputs = rknn.inference(inputs=[img2], data_format=['nhwc'])
    np.save('./onnx_yolov11_0_raw.npy', outputs[1])
    np.save('./onnx_yolov11_1_raw.npy', outputs[3])
    np.save('./onnx_yolov11_2_raw.npy', outputs[5])
    print('done')

    # post process
    input0_data = outputs[1]
    input1_data = outputs[3]
    input2_data = outputs[5]

    # 创建一个全零数组,用于填充
    # 计算需要填充的通道数
    pad_channels = 255 - len(classes)
    padding = np.zeros((1, pad_channels, 80, 80), dtype=np.float32)
    input0_data = np.concatenate((input0_data, padding), axis=1)
    padding = np.zeros((1, pad_channels, 40, 40), dtype=np.float32)
    input1_data = np.concatenate((input1_data, padding), axis=1)
    padding = np.zeros((1, pad_channels, 20, 20), dtype=np.float32)
    input2_data = np.concatenate((input2_data, padding), axis=1)
    np.save('./onnx_yolov11_0.npy', input0_data)
    np.save('./onnx_yolov11_1.npy', input1_data)
    np.save('./onnx_yolov11_2.npy', input2_data)
    
    input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))
    input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))
    input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))

    input_data = list()
    input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
    input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
    input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))

    boxes, classes, scores = yolov5_post_process(input_data)

    img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
    if boxes is not None:
        draw(img_1, boxes, scores, classes)
        cv2.imwrite('result.jpg', img_1)
        print('Save results to result.jpg!')

    rknn.release()

def precess_image(img_src, resize_w, resize_h):
    orig = cv2.imread(img_src)
    if orig is None:
        print(f"无法读取图像: {img_path}")
        return
    img_h, img_w = orig.shape[:2]
    print(f'{type(orig)}')
    image = cv2.resize(orig, (resize_w, resize_h), interpolation=cv2.INTER_LINEAR)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image = image.astype(np.float32)
    image /= 255.0

    '''
    # Set inputs
    img = cv2.imread(IMG_PATH)
    # img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))

    # Inference
    print('--> Running model')
    img2 = np.expand_dims(img, 0)
    '''

    return image

def detect_on_rk3588(rknn_path=RKNN_MODEL, image_path=IMG_PATH, classes=CLASSES):
    # Create RKNN object
    rknn = RKNN(verbose=True)

    # pre-process config
    print('--> Config model')
    rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform='rk3588')
    print('done')

    # Load ONNX model
    ret = rknn.load_rknn(rknn_path)
    if ret != 0:
        print('Export rknn model failed!')
        exit(ret)
    print('done')


    # Init runtime environment
    print('--> Init runtime environment')
    ret = rknn.init_runtime(target="rk3588", core_mask=RKNN.NPU_CORE_AUTO)
    if ret != 0:
        print('Init runtime environment failed!')
        exit(ret)
    print('done')


    img2 = precess_image(image_path, input_imgW, input_imgH)
    np.save('./raw_yolov11_in.npy', [img2])
    outputs = rknn.inference(inputs=[img2], data_format=['nhwc'])
    np.save('./raw_yolov11_0.npy', outputs[1])
    np.save('./raw_yolov11_1.npy', outputs[3])
    np.save('./raw_yolov11_2.npy', outputs[5])
    print('done')

    # 创建一个全零数组,用于填充
    # 计算需要填充的通道数
    pad_channels = 255 - len(classes)
    padding = np.zeros((1, pad_channels, 80, 80), dtype=np.float32)
    input0_data = np.concatenate((input0_data, padding), axis=1)
    padding = np.zeros((1, pad_channels, 40, 40), dtype=np.float32)
    input1_data = np.concatenate((input1_data, padding), axis=1)
    padding = np.zeros((1, pad_channels, 20, 20), dtype=np.float32)
    input2_data = np.concatenate((input2_data, padding), axis=1)
    np.save('./modified_yolov11_0.npy', input0_data)
    np.save('./modified_yolov11_1.npy', input1_data)
    np.save('./modified_yolov11_2.npy', input2_data)
    
    input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))
    input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))
    input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))

    input_data = list()
    input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
    input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
    input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))

    boxes, classes, scores = yolov5_post_process(input_data)

    img = cv2.imread(image_path)
    img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
    if boxes is not None:
        draw(img_1, boxes, scores, classes)
        cv2.imwrite('rknn_detect_result.jpg', img_1)
        print('Save results to rknn_detect_result.jpg!')
    else:
        print('target can not be found!')

    rknn.release()


if __name__ == '__main__':
    detect_on_ubuntu(ONNX_MODEL, RKNN_MODEL, IMG_PATH, CLASSES)
    #detect_on_rk3588(RKNN_MODEL, IMG_PATH, CLASSES)

 5.结论:

最终通过仔细核对yolov5, yolo11, onnx几个模型的输入输出参数,发现了这样的事情:

  • yolov11 的输出参数有6个,大概率,按照上面的结论是,1,3,5相当于原来的输出参数0,1,2
  • yolov11的输出的6个参数,第二维尺寸,现在不是255(-1)个,而是len(classes)个。
  • 我的问题在于我在训练时把classes设置为81,而在导出.rknn时,仍然导出为80.所以,结果就是onnx模式访问正常,而.rknn方式访问错误。
  • yolo detect代码中的.save是瑞芯微的那些同志在调试接口时留下的一些调试语句,它们不必存在。
  • rknn代码输入输出参数建议u8化,在simluation环境传递的是float32。这个修改结束,应该速度会快不少。
  • 还有,yolo detect的matrix pack in pack out时,效率很低,他还在进行float转换。这个我没有仔细看代码,理论上,onnx的识别信息析取是更快的。

还在测试。如果确认最终稿的结论成立。我会在这个帖子里留下标记。上面的两端代码没有大问题,我在测试成功后会更新,现在就是对的。


http://www.kler.cn/a/552305.html

相关文章:

  • vscode/cursor 写注释时候出现框框解决办法
  • 深度学习论文: RailYolact -- A Yolact Focused on edge for Real-Time Rail Segmentation
  • Linux环境基础开发工具的使用(一)
  • 五档历史Level2行情数据:期货市场的信息宝库
  • 【Spring快速入门】不断更新...
  • 实现可拖拽的 Ant Design Modal 并保持下层 HTML 可操作性
  • 百度智能云—千帆 ModelBuilder API的简单调用(Java)
  • leetcode232-用栈实现队列
  • 百度搜索和文心智能体接入DeepSeek满血版——AI搜索的新纪元
  • 【网络安全 | 漏洞挖掘】我如何通过Cookie Manipulation发现主域上的关键PII?
  • [OD E 100] 服务器广播需要广播的服务器数量
  • Hive Orc表数据导出和导入
  • Param ‘serviceName‘ is illegal, serviceName is blank
  • Rabbitmq的三个端口区分
  • python 的框架 dash 开发TodoList Web 应用
  • Spring Boot自动装配:约定大于配置的魔法解密
  • 组合模式详解(Java)
  • React 与 Vue 对比指南 - 上
  • 备战蓝桥杯 Day4 差分
  • 学习机器视觉halcon3D需要什么基础知识