当前位置: 首页 > article >正文

机器学习小项目之鸢尾花分类

项目目标:

使用机器学习算法(如 K-近邻算法)来对鸢尾花数据集进行分类。

1. 准备工作

首先,我们需要安装一些常用的机器学习库,如 scikit-learnpandas

pip install scikit-learn pandas matplotlib

2. 导入必要的库

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt

3. 加载数据集

scikit-learn 提供了内置的鸢尾花数据集,我们可以直接导入。

from sklearn.datasets import load_iris

# 加载鸢尾花数据集
iris = load_iris()

# 转换为DataFrame便于查看
data = pd.DataFrame(data=iris.data, columns=iris.feature_names)
data['species'] = iris.target

print(data.head())

4. 数据预处理

在这一步,我们将数据拆分为特征(X)和标签(y),并进行训练集和测试集的划分。

X = iris.data  # 特征数据
y = iris.target  # 目标标签

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

5. 特征缩放

KNN算法对数据的尺度很敏感,所以我们需要对特征进行标准化。

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

6. 训练模型

现在我们可以使用 K-近邻算法来训练模型了。

# 使用 KNN 算法
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train_scaled, y_train)

7. 预测与评估

训练完成后,我们可以用测试集进行预测,并评估模型的准确率。

# 进行预测
y_pred = knn.predict(X_test_scaled)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"模型的准确率: {accuracy:.2f}")

8. 可视化

我们可以通过可视化来进一步理解模型的表现。

# 显示预测结果
plt.scatter(y_test, y_pred, color='blue')
plt.plot([0, 2], [0, 2], 'r--')
plt.xlabel('真实值')
plt.ylabel('预测值')
plt.title('KNN预测结果')
plt.show()

9. 完整代码示例

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 标准化特征数据
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# 训练 KNN 模型
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train_scaled, y_train)

# 进行预测
y_pred = knn.predict(X_test_scaled)

# 评估模型的准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"模型的准确率: {accuracy:.2f}")

# 可视化预测结果
plt.scatter(y_test, y_pred, color='blue')
plt.plot([0, 2], [0, 2], 'r--')
plt.xlabel('真实值')
plt.ylabel('预测值')
plt.title('KNN预测结果')
plt.show()

在这里插入图片描述

10. 总结

这个小项目展示了机器学习中的基础步骤:数据加载、预处理、模型训练、评估以及可视化。你可以通过调整模型的参数,尝试其他算法(如决策树、支持向量机等),或者进行更复杂的数据集分析来进一步深入学习机器学习。


http://www.kler.cn/a/552897.html

相关文章:

  • ubuntu系统中新增硬盘挂载硬盘
  • SVN 创建版本库
  • 力扣 买卖股票的最佳时机
  • PyCharm Terminal 自动切换至虚拟环境
  • module ‘cv2.dnn‘ has no attribute ‘DictValue‘解决办法
  • Java并发编程面试题:锁(17题)
  • AI时代的前端开发:新兴职位与效率提升工具
  • QT异步编程之QMetaObject::invokeMethod
  • 极限网关 INFINI Gateway 配置文件核心解读
  • 基于ffmpeg+openGL ES实现的视频编辑工具-解码(四)
  • 【数据结构初阶第十二节】设计循环队列
  • transfmer学习认识
  • 用esp32实现一个可配置的网关应用记录:通过网页进行OTA升级
  • 【金融量化】解读量化投资回测指标
  • C#中的加密和解密类设计
  • 网络工程师 (43)IP数据报
  • SCANet代码解读
  • 爬取网站内容转为markdown 和 html(通常模式)
  • kotlin Java 使用ArrayList.add() ,set()前面所有值被 覆盖 的问题
  • 上证50股指期货持仓量查询的方式在哪里?