当前位置: 首页 > article >正文

【机器学习】衡量线性回归算法最好的指标:R Squared

衡量线性回归算法最好的指标:R Squared

  • 一、摘要
  • 二、回归算法评价指标与R Squared指标介绍
  • 三、R Squared的编程实践

一、摘要

本文主要介绍了线性回归算法中用于衡量模型优劣的重要指标——R Squared(R方)。R方用于比较模型预测结果与实际结果的拟合程度,其值范围在0到1之间,越接近1表示模型预测效果越好。R方的计算涉及预测误差总误差的比较,其中分子预测误差的平方和分母总误差的平方和当R方等于1时,表示模型预测无误差;小于零则表明模型效果不佳,可能不适合线性回归。 此外,还介绍了如何通过编程实践计算R方值,并在不同的机器学习库中实现该指标的计算。最后,强调了R方作为衡量线性回归模型性能的关键指标的重要性。

二、回归算法评价指标与R Squared指标介绍

  1. 之前的博文中介绍了评价回归算法优劣的三个指标:MSE(均方误差)、RMSE(均方根误差)和MAE(平均绝对误差)。这些指标存在的问题无法直接比较不同问题的预测误差。分类问题的评价指标简单明了,取值在0到1之间,而回归算法的指标没有这样的性质。

  2. R Squared(R方) 是一个解决上述问题的新指标。
    计算方法:1减去两个量的比值,分子是残差平方和,分母是总平方和。
    在这里插入图片描述

    • R方计算步骤:计算残差平方和与总平方和,代入公式计算R方值。
    • 残差平方和:预测结果减去真实值平方和
    • 总平方和:真实值均值平方和

    R Squared的优势:

    • R方将回归问题的衡量结果归约到0到1之间,便于比较不同模型的性能。
    • R方越大越好,越接近1表示模型预测越准确。
    • R方小于零表示模型预测效果不如基准模型。
    • 可能意味着数据间不存在线性关系,需要考虑其他回归方法。

    R Squared的统计意义:

    • R方可以表示为1减去均方误差(MSE)与方差的比值。
    • 均方误差:预测结果与真实值的平方差均值。
    • 方差:真实值的方差。
    • R方衡量模型与基准模型的差异,值越大表示模型预测越准确。
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述
      最后这张图将公式的含义是1 - (MSE(均方误差)/ Var(方差)

三、R Squared的编程实践

  1. 计算R方的编程实践:使用NumPy、SciPy或sklearn等库进行计算。
  2. 示例代码:计算简单线性回归模型的R方值。
    import openml
    import numpy as np
    
    # 从 openml 获取波士顿房价数据集
    dataset = openml.datasets.get_dataset(531)
    X, y, categorical_indicator, attribute_names = dataset.get_data(
        target=dataset.default_target_attribute, dataset_format='dataframe'
    )
    
    # 这里只用RM这个特征来计算,提取RM列特征数据
    boston_datas = X.iloc[:,5]
    
    # 分布在50那里的一些点,可能不是真实的点,比如问卷调查中通过会设置一些上限点,而往往这些不是真实存在的额点,因此可以去除
    y_normal = y[y < 50.0]
    x_normal = boston_datas[y < 50.0]
    
    import sys
    # 替换为你的 PyCharm 工程实际路径
    project_path = 'D:/PycharmProjects/pythonProject/'
    if project_path not in sys.path:
        sys.path.append(project_path)
    
    # 拆分训练集和测试集
    from model_selection import train_test_split
    X_train,y_train,X_test,y_test = train_test_split(np.array(x_normal),np.array(y_normal),seed=666)
    
    # 引入我们自己实现的线性回归模型
    from SimpleLinearRegressionDemo import SimpleLinearRegressionModel
    reg1 = SimpleLinearRegressionModel()
    reg1.fit(X_train,y_train)
    
    # 预测结果
    y_predict = reg1.predict(X_test)
    
    # scikit-learn来计算均方误差和绝对值误差
    from sklearn.metrics import mean_squared_error
    from sklearn.metrics import mean_absolute_error
    
    # 根据公式先计算分子: MSE 均方误差
    n_mse = mean_squared_error(y_pred=y_predict,y_true=y_test)
    # 根据公式先计算分母: 测试集的方差
    d_var = np.var(y_test)
    
    # 带入公式,得到R Squared值
    ret_pred = 1 - n_mse / d_var
    ret_pred
    
    执行结果:0.6129316803937324
    在这里插入图片描述
    在这里插入图片描述

http://www.kler.cn/a/554788.html

相关文章:

  • unity学习50:NavMeshAgent 区域Areas和cost
  • ES三种查询方式,为什么searchAfter效率高
  • 全志A133 android10 适配SLM770A 4G模块
  • 网络安全入门攻击与防御实战(四)
  • 卷积神经网络实战宠物狗识别
  • 从硬件工程师视角解析宇树机器人:四足机器人的核心设计与技术挑战
  • leetcode876.链表的中间结点
  • HBuilderX中,VUE生成随机数字,vue调用随机数函数
  • Cannot import to svn: ‘C:\Program‘ 不是内部或外部命令,也不是可运行的程序 或批处理文件。
  • QT基于Gstreamer采集的简单示例
  • Python的那些事第二十三篇:Express(Node.js)与 Python:一场跨语言的浪漫邂逅
  • 【Python爬虫(22)】解锁MySQL性能密码:优化与索引全攻略
  • 【单臂路由配置】
  • leecode 刷题感悟-- 哈希表
  • Redis 的线程安全问题解析:为什么 Redis 是线程安全的?
  • 傅里叶变换和小波变换概述及实践
  • 如何在 Mac 上安装并配置 JDK 环境变量
  • Qt 中的QMainWindow、QWidget 和 QDialog 基类
  • Python爬虫实战:获取腾牛网高清壁纸图片
  • 深度神经网络 机器学习 超参数自动优化 ,PyGAD和DEAP是两个常用的遗传算法库,它们各自有不同的特点和适用场景