当前位置: 首页 > article >正文

PyTorch Tensor 形状变化操作详解

PyTorch Tensor 形状变化操作详解

在深度学习中,Tensor 的形状变换是非常常见的操作。PyTorch 提供了丰富的 API 来帮助我们调整 Tensor 的形状,以满足模型输入、计算或数据处理的需求。本文将详细介绍 PyTorch 中常见的 Tensor 形状变换操作,并通过示例代码进行说明。


1. 基础形状操作

1.1 viewreshape

  • 功能:改变 Tensor 的形状而不改变其数据。
  • 区别
    • view 要求新形状的总元素数与原形状一致,否则会报错。
    • reshape 更灵活,如果无法直接改变形状,会尝试创建一个新的 Tensor。
  • 示例
tensor = torch.randn(2, 3, 4)  # 原形状为 (2, 3, 4)
reshaped_tensor = tensor.view(2, 12)  # 改变形状为 (2, 12)
print(reshaped_tensor.shape)  # 输出: torch.Size([2, 12])

1.2 squeezeunsqueeze

  • 功能
    • squeeze:移除大小为 1 的维度。
    • unsqueeze:在指定位置插入大小为 1 的维度。
  • 示例
tensor = torch.randn(1, 3, 1, 4)  # 原形状为 (1, 3, 1, 4)
squeezed_tensor = tensor.squeeze()  # 移除所有大小为 1 的维度
print(squeezed_tensor.shape)  # 输出: torch.Size([3, 4])

unsqueezed_tensor = squeezed_tensor.unsqueeze(0)  # 在第 0 维插入大小为 1 的维度
print(unsqueezed_tensor.shape)  # 输出: torch.Size([1, 3, 4])

2. 高级形状操作

2.1 permute

  • 功能:重新排列 Tensor 的维度顺序。
  • 示例
tensor = torch.randn(2, 3, 4)  # 原形状为 (2, 3, 4)
permuted_tensor = tensor.permute(2, 0, 1)  # 调整为 (4, 2, 3)
print(permuted_tensor.shape)  # 输出: torch.Size([4, 2, 3])

2.2 transpose

  • 功能:交换指定的两个维度。
  • 示例
tensor = torch.randn(3, 4)  # 原形状为 (3, 4)
transposed_tensor = tensor.transpose(0, 1)  # 交换第 0 和第 1 维度
print(transposed_tensor.shape)  # 输出: torch.Size([4, 3])

2.3 flatten

  • 功能:将指定范围内的维度展平为一维。
  • 示例
tensor = torch.randn(2, 3, 4)  # 原形状为 (2, 3, 4)
flattened_tensor = tensor.flatten(start_dim=1)  # 展平从第 1 维开始
print(flattened_tensor.shape)  # 输出: torch.Size([2, 12])

2.4 repeat

  • 功能:沿指定维度重复 Tensor。
  • 示例
tensor = torch.tensor([[1, 2], [3, 4]])  # 原形状为 (2, 2)
repeated_tensor = tensor.repeat(2, 3)  # 在第 0 维重复 2 次,在第 1 维重复 3 次
print(repeated_tensor.shape)  # 输出: torch.Size([4, 6])

2.5 expand

  • 功能:在不复制数据的情况下扩展 Tensor 的形状(仅适用于大小为 1 的维度)。
  • 示例
tensor = torch.tensor([[1], [2], [3]])  # 原形状为 (3, 1)
expanded_tensor = tensor.expand(3, 4)  # 扩展为 (3, 4)
print(expanded_tensor)
# 输出:
# tensor([[1, 1, 1, 1],
#         [2, 2, 2, 2],
#         [3, 3, 3, 3]])

3. 数据提取与分散

3.1 narrow

  • 功能:按指定维度和范围提取部分 Tensor。
  • 示例
tensor = torch.arange(10)  # 原形状为 (10,)
narrowed_tensor = tensor.narrow(0, 2, 4)  # 从第 0 维索引 2 开始提取长度为 4 的部分
print(narrowed_tensor)  # 输出: tensor([2, 3, 4, 5])

3.2 gather

  • 功能:根据索引从指定维度收集元素。
  • 示例
tensor = torch.tensor([[1, 2], [3, 4]])  # 原形状为 (2, 2)
indices = torch.tensor([[0, 1], [1, 0]])  # 索引矩阵
gathered_tensor = torch.gather(tensor, 1, indices)  # 按列索引收集
print(gathered_tensor)
# 输出:
# tensor([[1, 2],
#         [4, 3]])

3.3 scatter

  • 功能:根据索引将值分散到目标 Tensor 中。
  • 示例
tensor = torch.zeros(2, 3)  # 目标 Tensor,初始为零
indices = torch.tensor([[0, 1, 2], [2, 0, 1]])  # 索引矩阵
values = torch.tensor([[5, 6, 7], [8, 9, 10]])  # 值矩阵
scattered_tensor = tensor.scatter(1, indices, values)  # 按列分散赋值
print(scattered_tensor)
# 输出:
# tensor([[5., 6., 7.],
#         [0., 9., 8.]])

4. 对角操作

4.1 diag

  • 功能:提取对角线元素或将一维 Tensor 转换为对角矩阵。
  • 示例
tensor = torch.tensor([1, 2, 3])  # 一维 Tensor
diag_tensor = torch.diag(tensor)  # 创建对角矩阵
print(diag_tensor)
# 输出:
# tensor([[1, 0, 0],
#         [0, 2, 0],
#         [0, 0, 3]])


http://www.kler.cn/a/555117.html

相关文章:

  • 使用Spring Boot构建电商订单系统API的实践
  • 磐维数据库双中心容灾流复制集群搭建
  • dockerfile 使用环境变量
  • 新品 | 杰和科技最新发布搭载英特尔N95处理器的一体机主板CB4-208-U1
  • STL 在线转 3MF,开启 3D 模型转换新体验
  • PLC通信交互系统技术分享
  • 为AI聊天工具添加一个知识系统 之113 详细设计之54 Chance:偶然和适配 之2
  • 解决OpenEuler系统修改句柄无效的问题
  • 14.2 Auto-GPT 开源项目深度解析:从代码架构到二次开发实践
  • 理解都远正态分布中指数项的精度矩阵(协方差逆矩阵)
  • 利用Java爬虫精准获取商品SKU详细信息:实战案例指南
  • Ubuntu 安装 OpenCV (C++)
  • 前端性能测试优化案例
  • kettle从入门到精通 第九十二课 ETL之kettle 使用Kettle的Carte对外发布读写接口
  • 【论文技巧】Mermaid VSCode插件制作流程图保存方法
  • [Android] APK提取器(1.3.7)版本
  • 如何组织和管理JavaScript文件:最佳实践与策略
  • 泰山派RK3566移植QT,动鼠标时出现屏幕闪烁
  • #渗透测试#批量漏洞挖掘#畅捷通T+远程命令执行漏洞
  • 使用 Docker 部署 Flask 应用