P9631 [ICPC 2020 Nanjing R] Just Another Game of Stones Solution
Description
给定序列 a = ( a 1 , a 2 , ⋯ , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,⋯,an),有 m m m 个操作分两种:
- chmax ( l , r , k ) \operatorname{chmax}(l,r,k) chmax(l,r,k):对每个 i ∈ [ l , r ] i \in [l,r] i∈[l,r] 执行 a i ← max ( a i , k ) a_i\gets\max(a_i,k) ai←max(ai,k).
-
query
(
l
,
r
,
k
)
\operatorname{query}(l,r,k)
query(l,r,k):用石堆
a
l
⋯
r
a_{l\cdots r}
al⋯r 和一堆
k
k
k 个石子玩
Nim
,求先手第一次取完石子后,后手必败的操作方案数.
Limitations
1
≤
n
,
m
≤
2
×
1
0
5
1 \le n,m \le 2\times 10^5
1≤n,m≤2×105
0
≤
a
i
,
k
<
2
30
0 \le a_i,k < 2^{30}
0≤ai,k<230
1
≤
l
≤
r
≤
n
1 \le l \le r \le n
1≤l≤r≤n
3
s
,
256
MB
3\text{s},256\text{MB}
3s,256MB
Solution
看到
chmax
\operatorname{chmax}
chmax 先来一个吉司机.
然后看查询,显然要维护
xor
\operatorname{xor}
xor 和用来判断先手是否必胜.
考虑如何求方案数,将
k
k
k 算入,设
s
s
s 为这局游戏的 SG
值,若先手必胜则策略显然为
a
i
←
a
i
xor
s
a_i \gets a_i \operatorname{xor} s
ai←aixors,所以把问题转化成求
∑
[
a
i
>
(
a
i
xor
s
)
]
\sum [a_i > (a_i \operatorname{xor} s)]
∑[ai>(aixors)].
考虑异或性质,发现只需要维护某位为
1
1
1 的数的数量,查询时就找到
s
s
s 最高位,统计这位为
1
1
1 的即可.
需要的信息都可以在吉司机上维护,于是就做完了.
注意
∞
\infty
∞ 要开够.
Code
4.25 KB , 578 ms , 114.35 MB (in total, C++ 20 with O2) 4.25\text{KB},578\text{ms},114.35\text{MB}\;\texttt{(in total, C++ 20 with O2)} 4.25KB,578ms,114.35MB(in total, C++ 20 with O2)
// Problem: P9631 [ICPC2020 Nanjing R] Just Another Game of Stones
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P9631
// Memory Limit: 256 MB
// Time Limit: 3000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
const int inf = 2147483647;
struct Node {
int l, r;
int min, sec, cnt, tag, sum;
array<int, 30> bits;
};
using Tree = vector<Node>;
inline int ls(int u) { return 2 * u + 1; }
inline int rs(int u) { return 2 * u + 2; }
inline void pushup(Tree& tr, int u) {
tr[u].sum = tr[ls(u)].sum ^ tr[rs(u)].sum;
if (tr[ls(u)].min == tr[rs(u)].min) {
tr[u].min = tr[ls(u)].min;
tr[u].cnt = tr[ls(u)].cnt + tr[rs(u)].cnt;
tr[u].sec = min(tr[ls(u)].sec, tr[rs(u)].sec);
}
else if (tr[ls(u)].min < tr[rs(u)].min) {
tr[u].min = tr[ls(u)].min;
tr[u].cnt = tr[ls(u)].cnt;
tr[u].sec = min(tr[ls(u)].sec, tr[rs(u)].min);
}
else {
tr[u].min = tr[rs(u)].min;
tr[u].cnt = tr[rs(u)].cnt;
tr[u].sec = min(tr[ls(u)].min, tr[rs(u)].sec);
}
for (int i = 0; i < 30; i++) {
tr[u].bits[i] = tr[ls(u)].bits[i] + tr[rs(u)].bits[i];
}
}
inline void build(Tree& tr, int u, int l, int r, const vector<int>& A) {
tr[u].l = l;
tr[u].r = r;
tr[u].tag = -1;
if (l == r) {
tr[u].min = tr[u].sum = A[l];
tr[u].sec = inf;
tr[u].cnt = 1;
for (int i = 0; i < 30; i++) tr[u].bits[i] = (A[l] >> i & 1);
return;
}
const int mid = (l + r) >> 1;
build(tr, ls(u), l, mid, A);
build(tr, rs(u), mid + 1, r, A);
pushup(tr, u);
}
inline void apply(Tree& tr, int u, int v) {
if (tr[u].min >= v) return;
tr[u].sum ^= (tr[u].cnt & 1) * (tr[u].min ^ v);
for (int i = 0; i < 30; i++)
tr[u].bits[i] += ((v >> i & 1) - (tr[u].min >> i & 1)) * tr[u].cnt;
tr[u].min = tr[u].tag = v;
}
inline void pushdown(Tree& tr, int u) {
if (tr[u].tag != -1) {
apply(tr, ls(u), tr[u].tag);
apply(tr, rs(u), tr[u].tag);
tr[u].tag = -1;
}
}
inline void update(Tree& tr, int u, int l, int r, int v) {
if (tr[u].min >= v) return;
if (l <= tr[u].l && tr[u].r <= r && tr[u].sec > v) return apply(tr, u, v);
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(tr, u);
if (l <= mid) update(tr, ls(u), l, r, v);
if (r > mid) update(tr, rs(u), l, r, v);
pushup(tr, u);
}
inline int qsum(Tree& tr, int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].sum;
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(tr, u);
if (r <= mid) return qsum(tr, ls(u), l, r);
else if (l > mid) return qsum(tr, rs(u), l, r);
else return qsum(tr, ls(u), l, r) ^ qsum(tr, rs(u), l, r);
}
inline int qbit(Tree& tr, int u, int l, int r, int k) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].bits[k];
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(tr, u);
if (r <= mid) return qbit(tr, ls(u), l, r, k);
else if (l > mid) return qbit(tr, rs(u), l, r, k);
else return qbit(tr, ls(u), l, r, k) + qbit(tr, rs(u), l, r, k);
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n, m;
scanf("%d %d", &n, &m);
vector<int> a(n);
for (int i = 0; i < n; i++) scanf("%d", &a[i]);
Tree tr(n << 2);
build(tr, 0, 0, n - 1, a);
auto get = [&](int l, int r, int x) {
int sg = qsum(tr, 0, l, r) ^ x, bit = -1;
for (int i = 0; i < 30; i++)
if (sg >> i & 1) bit = i;
if (bit == -1) return 0;
return qbit(tr, 0, l, r, bit) + (x >> bit & 1);
};
for (int i = 0, op, l, r, v; i < m; i++) {
scanf("%d %d %d %d", &op, &l, &r, &v);
l--, r--;
if (op == 1) update(tr, 0, l, r, v);
else printf("%d\n", get(l, r, v));
}
return 0;
}