当前位置: 首页 > article >正文

self-attention部分代码注释

 多头注意力机制(Multi-Head Attention, MHA),是 Transformer 模型的核心组件之一。以下是对代码的逐行解析和详细说明:   

attention-is-all-you-need-pytorch-master\transformer\SubLayers.py

class MultiHeadAttention(nn.Module):
    ''' Multi-Head Attention module '''
    '''
        n_head: 多头注意力head数量 8
        d_model: 输入向量的维度 512
        d_k    : 单head中 Q, k 向量的维度 512 / 8 = 64
        d_v    : 单head中V向量的维度 d_k, 与d_v是独立的,可以相等也可以不等。在这里d_k = d_v 64
    '''

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super().__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
        self.fc = nn.Linear(n_head * d_v, d_model, bias=False)

        self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)

        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)


    def forward(self, q, k, v, mask=None):
        '''
        q, k, v 的形状为 (32, 10, 512)(batch_size=32,seq_len=10,d_model=512)

        '''
        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)

        residual = q

        # Pass through the pre-attention projection: b x lq x (n*dv)
        # Separate different heads: b x lq x n x dv
        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) #view 为多头
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)

        # Transpose for attention dot product: b x n x lq x dv
        #q, k, w的维度为(32, 10, 8, 64) 转换后维度为(32, 8, 10, 64)
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)

        if mask is not None:
            mask = mask.unsqueeze(1)   # For head axis broadcasting.

        '''
        attn:  (32, 8, 10, 10)
        输出q:  (32, 8, 10, 64)
        '''
        q, attn = self.attention(q, k, v, mask=mask)

        # Transpose to move the head dimension back: b x lq x n x dv
        # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
        q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) #(32, 10, 512)
        q = self.dropout(self.fc(q))
        q += residual

        q = self.layer_norm(q)

        return q, attn

attention-is-all-you-need-pytorch-master\transformer\Modules.py

class ScaledDotProductAttention(nn.Module):
    ''' Scaled Dot-Product Attention '''

    def __init__(self, temperature, attn_dropout=0.1):
        super().__init__()
        self.temperature = temperature
        self.dropout = nn.Dropout(attn_dropout)

    def forward(self, q, k, v, mask=None):
        '''
        q: (32, 8, 10, 64)  -> 缩放 -> (32, 8, 10, 64)
        k: (32, 8, 10, 64)  -> 转置 -> (32, 8, 64, 10)
        attn = q @ k.transpose(2, 3): (32, 8, 10, 10)

        attn: (32, 8, 10, 10)  -> softmax -> (32, 8, 10, 10)
        v: (32, 8, 10, 64)
        output = attn @ v: (32, 8, 10, 64)
        '''
        attn = torch.matmul(q / self.temperature, k.transpose(2, 3))

        if mask is not None:
            attn = attn.masked_fill(mask == 0, -1e9)

        attn = self.dropout(F.softmax(attn, dim=-1))
        output = torch.matmul(attn, v)

        return output, attn


http://www.kler.cn/a/561362.html

相关文章:

  • 清华大学DeepSeek文档下载,清华大学deepseek下载(完成版下载)
  • 在WINDOWS系统使用CMake gui编译NLopt配合VSCode使用
  • java项目之网络游戏交易系统源码(ssm+mysql)
  • 结构型模式 - 外观模式 (Facade)
  • 计算机毕业设计SpringBoot+Vue.js教学资源库(源码+文档+PPT+讲解)
  • labview实现有符号位16进制转二进制补码转真值
  • 每日一题-设计内存分配器;详细分析思路以及多解法
  • 企业业务安全进阶之路:AI技术与数据分析的应用
  • JavaWeb 学习笔记
  • 个人电脑小参数GPT预训练、SFT、RLHF、蒸馏、CoT、Lora过程实践——MiniMind图文版教程
  • linux--多进程开发基础(3) exec函数族
  • JavaWeb-GenericServlet源码分析(适配器/模板方法)
  • Sui 通过 SCION 推进网络安全与性能
  • Log | Hugo+PaperMod+Github创建自己的博客网站
  • 在ubuntu如何安装samba软件?
  • MongoDB03 - MongoDB索引,事务和安全
  • mac下载MAMP6.8.1
  • 可重入与可重入锁:多线程编程中的安全卫士
  • rust学习笔记6-数组练习704. 二分查找
  • MySQL数据,查询QPS,TPS 数据