量子关联特性的多维度探索:五量子比特星型系统与两量子比特系统的对比分析
模拟一个五量子比特系统,其中四个量子比特(编号为1, 2, 3, 4)分别与第五个量子比特(编号为5)耦合,形成一个星型结构。分析量子比特1和2的纠缠熵随时间的变化。
系统的哈密顿量H
描述了量子比特间的相互作用,这里使用sigmax()
表示泡利X矩阵,用于描述量子比特间的耦合。qeye(2)
是2x2的单位矩阵,用于扩展哈密顿量的维度。
import numpy as np
import matplotlib.pyplot as plt
from qutip import (basis, mesolve, tensor, sigmax, qeye, destroy,
entropy_vn, concurrence, ptrace, Options, sigmam)
# 配置全局绘图参数
plt.rcParams['font.sans-serif'] = ['Arial']
plt.rcParams['axes.unicode_minus'] = False
def compute_Gamma(t_points, gamma, omega, kBT):
"""
根据文档中的公式(39),计算耗散系数Γ(t)。
"""
Gamma_values = []
dt = t_points[1] - t_points[0]
for t in t_points:
if t == 0:
Gamma_values.append(0)
else:
# 计算积分 ∫_0^t ⟨{f̂(t), f̂(t')}⟩ dt'
integral = 0
for t_prime in np.linspace(0, t, int(t / dt)):
correlation = 2 * gamma * omega * kBT * np.exp(-gamma * abs(t - t_prime)) * np.cos(
omega * (t - t_prime))
integral += correlation * dt
Gamma_values.append(np.max([integral, 0])) # 确保Gamma值非负
return Gamma_values
# 第一部分:五量子比特星型耦合系统
def simulate_five_qubits_star():
J = 0.3 # 相邻量子比特耦合强度
gamma = 0.1 # 耗散率
omega = 1.0 # 环境频率
kBT = 1.0 # 温度乘以玻尔兹曼常数
total_time = 20
num_steps = 1000 # 增加时间步数以提高精度
t_points = np.linspace(0, total_time, num_steps + 1)
# 构建星型哈密顿量 (1-5, 2-5, 3-5, 4-5)
H = J * (
tensor(sigmax(), qeye(2), qeye(2), qeye(2), sigmax()) +
tensor(qeye(2), sigmax(), qeye(2), qeye(2), sigmax()) +
tensor(qeye(2), qeye(2), sigmax(), qeye(2), sigmax()) +
tensor(qeye(2), qeye(2), qeye(2), sigmax(), sigmax())
)
psi0 = tensor(basis(2, 0), basis(2, 0), basis(2, 0), basis(2, 0), basis(2, 0))
# 计算每个时间点上的耗散系数Γ(t)
Gamma_values = compute_Gamma(t_points, gamma, omega, kBT)
states = [psi0]
for i in range(num_steps):
t_start = t_points[i]
t_end = t_points[i + 1]
Gamma_t = Gamma_values[i]
if Gamma_t < 0:
Gamma_t = 0 # 确保Gamma值非负
c_ops = [np.sqrt(Gamma_t) * tensor(sigmam(), qeye(2), qeye(2), qeye(2), qeye(2))]
result = mesolve(H, states[-1], [t_start, t_end], c_ops, [],
options={'store_states': True, 'atol': 1e-8, 'rtol': 1e-6})
states.append(result.states[-1])
entropies_1 = [entropy_vn(ptrace(s, [0])) for s in states] # Qubit 1
entropies_2 = [entropy_vn(ptrace(s, [1])) for s in states] # Qubit 2
return t_points, entropies_1, entropies_2
# 第二部分:增强型量子关联分析(含纠缠熵和纠缠度)
def enhanced_quantum_correlation_analysis():
J = 0.5
gamma = 0.1
# 两量子比特系统
H = J * tensor(sigmax(), sigmax())
psi0 = tensor(basis(2, 0), basis(2, 0))
c_ops = [np.sqrt(gamma) * tensor(sigmam(), qeye(2))]
t_points = np.linspace(0, 10, 50)
opts = {'store_states': True}
result = mesolve(H, psi0, t_points, c_ops, [], options=opts)
entropies = [entropy_vn(ptrace(s, [0])) for s in result.states]
concurrences = [concurrence(s) for s in result.states]
return t_points, entropies, concurrences
# =============================================================================
# 执行主程序
# =============================================================================
if __name__ == "__main__":
print("五量子比特星型系统模拟中...")
t_points_star, entropies_1, entropies_2 = simulate_five_qubits_star()
print("\n量子关联综合分析中...")
t_points_corr, entropies_corr, concurrences = enhanced_quantum_correlation_analysis()
print("所有模拟完成!")
# 绘制所有图表
plt.figure(figsize=(16, 12))
# 五量子比特星型系统图表
plt.subplot(2, 2, 1)
plt.plot(t_points_star, entropies_1, 'b--', label='Qubit 1 Entropy')
plt.plot(t_points_star, entropies_2, 'g-.', label='Qubit 2 Entropy')
plt.xlabel('Time')
plt.ylabel('Entropy')
plt.title('Five-Qubit Star: Entanglement Propagation')
plt.legend()
plt.grid(alpha=0.3)
# 增强型量子关联分析图表
plt.subplot(2, 2, 2)
plt.plot(t_points_corr, entropies_corr, 'b-o', label='Entanglement Entropy')
plt.plot(t_points_corr, concurrences, 'r-s', label='Concurrence')
plt.ylabel('Quantum Correlation')
plt.title('Comparative Analysis of Quantum Correlations')
plt.legend()
plt.grid(alpha=0.3)
plt.tight_layout()
plt.show()