当前位置: 首页 > article >正文

大语言模型学习

大语言模型发展历程

当前国内外主流LLM模型

一、国外主流LLM

  1. LLaMA2

    • Meta推出的开源模型,参数规模涵盖70亿至700亿,支持代码生成和多领域任务适配‌57。
    • 衍生版本包括Code Llama(代码生成优化)和Llama Chat(对话场景)‌56。
  2. GPT系列(GPT-3.5/GPT-4)

    • OpenAI开发的闭源模型,以多模态能力和长文本生成为核心优势,广泛应用于对话、代码生成等场景‌38。
  3. BLOOM

    • 由Hugging Face联合多国团队开发,1760亿参数,支持46种自然语言和13种编程语言,强调透明度和开源协作‌5。
  4. PaLM & Claude

    • Google的PaLM和Anthropic的Claude均为闭源模型,前者侧重科学计算,后者强化了推理和多模态能力‌37。
  5. BERT

    • Google早期基于Transformer架构的模型,虽参数较小(约3.4亿),但在自然语言理解任务中仍具影响力‌5。

二、国内主流LLM

  1. 文心一言(ERNIE Bot)

    • 百度研发的知识增强模型,融合万亿级数据和千亿级知识图谱,支持复杂问答和创意生成‌37。
  2. 通义千问

    • 阿里巴巴推出的开源模型(7B版本),基于Transformer架构,优化中英文混合任务处理‌36。
  3. ChatGLM系列

    • 包括ChatGLM-6B(62亿参数)和ChatGLM2-6B,支持双语对话,通过量化技术降低部署成本‌14。
    • 衍生模型VisualGLM-6B(78亿参数)整合视觉与语言模态,实现图文交互‌46。
  4. 盘古大模型

    • 华为开发的多模态模型,覆盖自然语言处理(NLP)、计算机视觉(CV)及科学计算领域‌7。
  5. MiLM-6B

    • 小米研发的64亿参数模型,在C-Eval和CMMLU中文评测中表现优异,尤其擅长STEM科目‌1。
  6. MOSS

    • 支持中英双语的开源对话模型,通过强化学习优化生成质量,适用于通用问答场景‌14。

三、其他特色模型

  • CodeFuse-13B‌:专精代码生成,预训练数据覆盖40+编程语言,HumanEval评测准确率达37.1%‌1。
  • 鹏程·盘古α‌:中文预训练模型,参数规模达千亿级,侧重长文本生成和领域适配‌6。
  • LaWGPT‌:基于中文法律知识微调的模型,适用于法律咨询和文书生成‌6。

大模型不足

当前大模型的不足主要体现在以下方面:

一、技术架构缺陷

  1. 数据与算力依赖过高
    大模型训练需消耗海量多模态数据及算力,万亿级参数规模导致资源投入呈指数级增长‌12。此外,海量小文件存储面临元数据管理挑战,需平衡扩展性与访问延时‌1。

  2. 逻辑推理能力薄弱
    在处理需逻辑推理、数值计算的复杂问题时表现较差,尤其在多步骤推理场景中准确率显著下降‌23。例如20步推理后准确率可能低于36%‌4。

  3. 灾难性遗忘与无记忆性
    训练新任务会损害原有任务性能,且在推理阶段无法记忆历史数据或场景(如自动驾驶需反复重新计算路况)‌23。多数大模型不具备持续记忆能力,依赖有限上下文窗口‌38。


二、知识与应用局限

  1. 知识时效性与领域局限
    大模型知识库仅覆盖训练数据截止时间点内容,无法实时更新‌5。同时缺乏特定领域(如企业私有数据)的专业知识,影响垂直场景应用效果‌5。

  2. 幻觉问题频发
    生成内容存在事实性错误或虚构信息,例如伪造参考文献、错误解答数学题等。这与基于概率预测的Transformer架构特性直接相关‌45。


三、模型可控性不足

  1. 自我纠错能力缺失
    无法识别错误来源(如训练数据缺陷或算法漏洞),更缺乏自主修正机制。典型案例包括GPT-4算术错误后无法定位问题根源‌23。

  2. 黑箱模型可解释性差
    决策过程不透明,导致医疗、法律等关键领域应用受限。调试困难进一步加剧优化挑战‌46。


四、资源与安全风险

  1. 计算成本高昂
    训练与部署需超大规模算力支持,对普通机构形成技术壁垒‌16。

  2. 数据偏见与标注错误
    训练数据隐含社会偏见可能被放大,人工标注错误易导致模型认知偏差‌6。

AIGC产业解析

AIGC基础层

算力基础 数据基础 算法基础

AIGC大模型层

通用基础大模型  行业垂直型基础大模型 业务垂直基础大模型

AIGC工具层

AI Agents 模型平台 模型服务 AutoGPT LangChain

AIGC应用层


http://www.kler.cn/a/569555.html

相关文章:

  • 科技赋能筑未来 中建海龙MiC建筑技术打造保障房建设新标杆
  • 【Maven】入门介绍 与 安装、配置
  • Spring 源码硬核解析系列专题(十二):Spring Integration 的消息驱动源码解析
  • nio使用
  • 在 ASP.NET Core 中压缩并减少图像的文件大小
  • SQL命令详解之数据的查询操作
  • SpringBoot Maven快速上手
  • 量子关联特性的多维度探索:五量子比特星型系统与两量子比特系统的对比分析
  • Nodejs-逐行读取文件【简易版】
  • 【第十节】C++设计模式(结构型模式)-Flyweight( 享元)模式
  • Python爬虫:WebAssembly案例分析与爬取实战
  • AWS API Gateway灰度验证实现
  • Difyにおけるデータベースマイグレーション手順
  • 【爬虫基础】第二部分 爬虫基础理论 P2/3
  • 【开源-线程池(Thread Pool)项目对比】
  • 01.01 QT信号和槽
  • FastExcel vs EasyExcel vs Apache POI:三者的全面对比分析
  • Kali Linux 2024.4版本全局代理(wide Proxy)配置,适用于浏览器、命令行
  • 初阶数据结构(C语言实现)——3顺序表和链表(2)
  • React+Antd-Mobile遇到的问题记录