当前位置: 首页 > article >正文

通往 AI 之路:Python 机器学习入门-线性代数

2.1 线性代数(机器学习的核心)

线性代数是机器学习的基础之一,许多核心算法都依赖矩阵运算。本章将介绍线性代数中的基本概念,包括标量、向量、矩阵、矩阵运算、特征值与特征向量,以及奇异值分解(SVD)。


2.1.1 标量、向量、矩阵

1. 标量(Scalar)

标量是一个单独的数,例如:

a = 5

在 Python 中:

a = 5  # 标量

2. 向量(Vector)

向量是由多个数值组成的一维数组,例如:

v = [2, 3, 5]

Python 实现:

import numpy as np
v = np.array([2, 3, 5])  # 一维数组表示向量
print(v)

3. 矩阵(Matrix)

矩阵是一个二维数组,例如:

A = [[1, 2],
     [3, 4]]

Python 实现:

A = np.array([[1, 2], [3, 4]])  # 二维数组表示矩阵
print(A)

2.1.2 矩阵运算

1. 矩阵加法

两个相同形状的矩阵可以相加:

A + B = [[1, 2],    +   [[5, 6],    =   [[6,  8],
         [3, 4]]         [7, 8]]         [10, 12]]

Python 计算:

A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
C = A + B
print(C)

2. 矩阵乘法

  • 逐元素相乘(Hadamard 乘积)
A ⊙ B = [[1×5,  2×6],
         [3×7,  4×8]]
       = [[5, 12],
          [21, 32]]

Python 实现:

C = A * B  # 逐元素相乘
print(C)
  • 矩阵乘法(点积)
A × B = [[1×5 + 2×7,  1×6 + 2×8],
         [3×5 + 4×7,  3×6 + 4×8]]
       = [[19, 22],
          [43, 50]]

Python 实现:

C = np.dot(A, B)  # 矩阵乘法
print(C)

3. 矩阵转置

矩阵转置是将行变成列:

A^T = [[1, 3],
       [2, 4]]

Python 计算:

A_T = A.T  # 计算转置
print(A_T)

4. 逆矩阵

如果矩阵 A 是可逆的(即 det(A) ≠ 0),那么存在一个矩阵 A^(-1) 使得:

A × A^(-1) = I  (单位矩阵)

Python 计算:

A_inv = np.linalg.inv(A)  # 计算逆矩阵
print(A_inv)

2.1.3 特征值与特征向量

特征值(Eigenvalue)和特征向量(Eigenvector)在机器学习中用于主成分分析(PCA)等算法。

1. 定义

对于矩阵 A,如果存在一个向量 v 和一个数 λ 使得:

A × v = λ × v

那么 vA 的特征向量,λ 是对应的特征值。

2. Python 计算特征值和特征向量

eigenvalues, eigenvectors = np.linalg.eig(A)
print("特征值:", eigenvalues)
print("特征向量:", eigenvectors)

2.1.4 SVD(奇异值分解)

奇异值分解(Singular Value Decomposition, SVD)是矩阵分解的一种重要方法,它可以表示为:

A = U × Σ × V^T

其中:

  • U 是左奇异向量矩阵
  • Σ 是对角矩阵,对角线上的元素称为奇异值
  • V^T 是右奇异向量矩阵的转置

Python 计算 SVD

U, S, V_T = np.linalg.svd(A)
print("U 矩阵:", U)
print("Σ 矩阵:", S)
print("V^T 矩阵:", V_T)

SVD 在降维(如 PCA)中有重要应用,后续章节将深入介绍。


总结

本章介绍了机器学习中常用的线性代数知识,包括:

  • 标量、向量、矩阵 及其表示方式
  • 矩阵运算(加法、乘法、转置、逆矩阵)
  • 特征值与特征向量(PCA 等算法的基础)
  • SVD(奇异值分解)(在数据降维中的应用)

掌握这些内容,有助于理解机器学习的数学基础!建议多实践代码,加深理解!


http://www.kler.cn/a/571184.html

相关文章:

  • ffmpeg 添加字幕subtitles绝对路径
  • Servlet理论和tomcat(2)http
  • 制服小程序的“滑手”:禁用页面左右滑动全攻略
  • leetcode112-路径总和
  • 练习题:66
  • Python 矩阵对角线操作函数介绍
  • 音频3A测试--AEC(回声消除)测试
  • 什么是线性代数
  • 2025机械考研复试面试问题汇总篇(含13门科目),考研机械复试专业面试常见重点问题总结!考研机械复试专业面试准备看这一篇就够了!
  • 爬虫Incapsula reese84加密案例:Etihad航空
  • 【科研绘图系列】R语言绘制数值的美国地图(USA map)
  • 华为hcia——Datacom实验指南——配置手工模式以太网链路聚合
  • 477页pdf深度剖析!张潼教授的《机器学习算法数学分析》
  • Zookeeper 及 基于ZooKeeper实现的分布式锁
  • 【每日学点HarmonyOS Next知识】网页获取高度、行为菜单底部布局、动画问题、Web跨域加载图片、不随系统深色变化
  • pytorch 模型测试
  • 一周学会Flask3 Python Web开发-WTForms表单验证
  • LeeCode题库第四十三题
  • 20道Redis面试题
  • AI 编译器学习笔记之十六 -- TVM