【STM32项目实战系列】基于STM32G474的FDCAN驱动配置
前言:本周工作中用到了CANFD的驱动,由于以前都是用到的CAN2.0,所以过程并不是特别的顺利,所以中间遇到几个比较小的问题导致自己卡住了一段时间,特此记录一下并完全奉上自己的配置的源码。
1,CANFD配置与简介
先简单介绍一下CANFD:
FDCAN(Flexible Data-Rate CAN,灵活数据速率 CAN)是 CAN-FD(CAN with Flexible Data-Rate)协议的实现,支持更高的传输速率和更大的数据负载。FDCAN 通信主要由 仲裁域(Arbitration Phase) 和 数据域(Data Phase) 组成,它们在波特率和位定时参数上有所不同。
这里配置的FDCAN外设的时钟为100MHZ
1,相较于传统的CAN,CANFD仲裁域与数据域的波特率可以不同也可以相同,
- 仲裁阶段:与传统 CAN 相同(≤ 1 Mbps)
- 数据阶段:可以使用更高的速率(典型值 2 Mbps、5 Mbps,甚至 8 Mbps
2,数据传输特点:
- 传输 更长的数据(64 字节),减少协议开销,提高带宽利用率。
- 数据阶段 速率更快,提升整车网络通信性能。
3,仲裁域特点:
- 低 ID 优先级高(0 优先级高于 1)。
- 发送过程中,如果节点检测到比自己更低的 ID(更高优先级),则自动停止发送。
- 传统 CAN 与 CAN FD 可以共存,但 如果 CAN FD 设备检测到传统 CAN 帧,会降级为传统 CAN 模式。
4,波特率的计算方式
Baud_rate = FDCAN_Clock / (Prescaler * (Seg_1 + Seg_2 + Sync_Jump_Width))
- FDCAN_Clock(FDCAN 时钟)
- Prescaler(分频系数)
- Phase Segment 1(相位段 1)
- Phase Segment 2(相位段 2,用于接收器同步和误差修正)
- Sync_Jump_Width(同步跳宽)
5,采样率的计算方式
- sampling_rate = (Seg_1 + 1) / (1 + Seg_1 + Seg_2)
2,FDCAN代码生成
这里先用的CUBEMX生成的源驱动代码,但是烧录进板子里面发现无法使用,后面就有改了一下,同样的把这个源码也搬过来
fdcan.c
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file fdcan.c
* @brief This file provides code for the configuration
* of the FDCAN instances.
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "fdcan.h"
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
FDCAN_HandleTypeDef hfdcan1;
/* FDCAN1 init function */
void MX_FDCAN1_Init(void)
{
/* USER CODE BEGIN FDCAN1_Init 0 */
/* USER CODE END FDCAN1_Init 0 */
/* USER CODE BEGIN FDCAN1_Init 1 */
/* USER CODE END FDCAN1_Init 1 */
hfdcan1.Instance = FDCAN1;
hfdcan1.Init.ClockDivider = FDCAN_CLOCK_DIV1;
hfdcan1.Init.FrameFormat = FDCAN_FRAME_FD_BRS;
hfdcan1.Init.Mode = FDCAN_MODE_NORMAL;
hfdcan1.Init.AutoRetransmission = DISABLE;
hfdcan1.Init.TransmitPause = DISABLE;
hfdcan1.Init.ProtocolException = DISABLE;
hfdcan1.Init.NominalPrescaler = 5;
hfdcan1.Init.NominalSyncJumpWidth = 1;
hfdcan1.Init.NominalTimeSeg1 = 15;
hfdcan1.Init.NominalTimeSeg2 = 4;
hfdcan1.Init.DataPrescaler = 5;
hfdcan1.Init.DataSyncJumpWidth = 1;
hfdcan1.Init.DataTimeSeg1 = 2;
hfdcan1.Init.DataTimeSeg2 = 1;
hfdcan1.Init.StdFiltersNbr = 28;
hfdcan1.Init.ExtFiltersNbr = 8;
hfdcan1.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
if (HAL_FDCAN_Init(&hfdcan1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN FDCAN1_Init 2 */
/* USER CODE END FDCAN1_Init 2 */
}
void HAL_FDCAN_MspInit(FDCAN_HandleTypeDef* fdcanHandle)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
if(fdcanHandle->Instance==FDCAN1)
{
/* USER CODE BEGIN FDCAN1_MspInit 0 */
/* USER CODE END FDCAN1_MspInit 0 */
/** Initializes the peripherals clocks
*/
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_FDCAN;
PeriphClkInit.FdcanClockSelection = RCC_FDCANCLKSOURCE_PCLK1;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
/* FDCAN1 clock enable */
__HAL_RCC_FDCAN_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**FDCAN1 GPIO Configuration
PA11 ------> FDCAN1_RX
PA12 ------> FDCAN1_TX
*/
GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF9_FDCAN1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* FDCAN1 interrupt Init */
HAL_NVIC_SetPriority(FDCAN1_IT0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(FDCAN1_IT0_IRQn);
HAL_NVIC_SetPriority(FDCAN1_IT1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(FDCAN1_IT1_IRQn);
/* USER CODE BEGIN FDCAN1_MspInit 1 */
/* USER CODE END FDCAN1_MspInit 1 */
}
}
void HAL_FDCAN_MspDeInit(FDCAN_HandleTypeDef* fdcanHandle)
{
if(fdcanHandle->Instance==FDCAN1)
{
/* USER CODE BEGIN FDCAN1_MspDeInit 0 */
/* USER CODE END FDCAN1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_FDCAN_CLK_DISABLE();
/**FDCAN1 GPIO Configuration
PA11 ------> FDCAN1_RX
PA12 ------> FDCAN1_TX
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_11|GPIO_PIN_12);
/* FDCAN1 interrupt Deinit */
HAL_NVIC_DisableIRQ(FDCAN1_IT0_IRQn);
HAL_NVIC_DisableIRQ(FDCAN1_IT1_IRQn);
/* USER CODE BEGIN FDCAN1_MspDeInit 1 */
/* USER CODE END FDCAN1_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
fdcan.h
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file fdcan.h
* @brief This file contains all the function prototypes for
* the fdcan.c file
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __FDCAN_H__
#define __FDCAN_H__
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
extern FDCAN_HandleTypeDef hfdcan1;
/* USER CODE BEGIN Private defines */
/* USER CODE END Private defines */
void MX_FDCAN1_Init(void);
/* USER CODE BEGIN Prototypes */
/* USER CODE END Prototypes */
#ifdef __cplusplus
}
#endif
#endif /* __FDCAN_H__ */
改进后的代码,增加一个发送与接收CAN报文的接口与一些驱动接口。尝试之后就可以发送与接收到报文了,亲测有效。另外,当数据域设置成最大的时候,使用CAN工具设置数据域的那个波特率都是可以接受到报文的。
fdcan.c
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file fdcan.c
* @brief This file provides code for the configuration
* of the FDCAN instances.
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "fdcan.h"
/* USER CODE BEGIN 0 */
RxDataLen_t RxData_len[16] = {
{SEND_BYTES_0, 0}, {SEND_BYTES_1, 1}, {SEND_BYTES_2, 2}, {SEND_BYTES_3, 3},
{SEND_BYTES_4, 4}, {SEND_BYTES_5, 5}, {SEND_BYTES_6, 6}, {SEND_BYTES_7, 7},
{SEND_BYTES_8, 8}, {SEND_BYTES_12, 12}, {SEND_BYTES_16, 16}, {SEND_BYTES_20, 20},
{SEND_BYTES_24, 24}, {SEND_BYTES_32, 32}, {SEND_BYTES_48, 48}, {SEND_BYTES_64, 64}
};
/* USER CODE END 0 */
FDCAN_HandleTypeDef hfdcan1;
/* FDCAN1 init function */
void MX_FDCAN1_Init(void)
{
FDCAN_FilterTypeDef sFilterConfig = {0};
/* USER CODE BEGIN FDCAN1_Init 0 */
/* USER CODE END FDCAN1_Init 0 */
/* USER CODE BEGIN FDCAN1_Init 1 */
/* USER CODE END FDCAN1_Init 1 */
// 仲裁域波特率为1Mbps 80% 数据域波特率为5Mbps 75%
// 波特率 Baud rate = FDCAN Clock / (Prescaler * (Seg_1 + Seg_2 + Sync_Jump_Width))
// 采样率 sampling rate = (Seg_1 + 1) / (1 + Seg_1 + Seg_2)
hfdcan1.Instance = FDCAN1;
hfdcan1.Init.ClockDivider = FDCAN_CLOCK_DIV1; // 外设时钟分频
hfdcan1.Init.FrameFormat = FDCAN_FRAME_FD_BRS; // 使用FD BRS格式
hfdcan1.Init.Mode = FDCAN_MODE_NORMAL; // 正常模式
hfdcan1.Init.AutoRetransmission = DISABLE; // 禁止自动重发
hfdcan1.Init.TransmitPause = DISABLE; // 禁止暂停传输
hfdcan1.Init.ProtocolException = DISABLE; // 禁用协议异常
hfdcan1.Init.NominalPrescaler = 5; // 仲裁域分频系数(1Mbps)
hfdcan1.Init.NominalSyncJumpWidth = 1; // 同步跳跃宽度
hfdcan1.Init.NominalTimeSeg1 = 15; // 时间段1
hfdcan1.Init.NominalTimeSeg2 = 4; // 时间段2
hfdcan1.Init.DataPrescaler = 5; // 数据域分频系数
hfdcan1.Init.DataSyncJumpWidth = 1; // 数据同步跳跃宽度
hfdcan1.Init.DataTimeSeg1 = 2; // 数据时间段1
hfdcan1.Init.DataTimeSeg2 = 1; // 数据时间段2
hfdcan1.Init.StdFiltersNbr = 28; // 标准过滤器数量
hfdcan1.Init.ExtFiltersNbr = 8; // 扩展过滤器数量
hfdcan1.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION; // 发送FIFO操作模式
if (HAL_FDCAN_Init(&hfdcan1) != HAL_OK)
{
printf("Error_Handler:HAL_FDCAN_Init\r\n");
Error_Handler();
}
sFilterConfig.IdType = FDCAN_STANDARD_ID;
sFilterConfig.FilterIndex = 0;
sFilterConfig.FilterType = FDCAN_FILTER_RANGE;
sFilterConfig.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
sFilterConfig.FilterID1 = 0x00;
sFilterConfig.FilterID2 = 0x7FF;
if (HAL_FDCAN_ConfigFilter(&hfdcan1, &sFilterConfig) != HAL_OK)
{
Error_Handler();
}
sFilterConfig.IdType = FDCAN_EXTENDED_ID;
sFilterConfig.FilterIndex = 0;
sFilterConfig.FilterType = FDCAN_FILTER_RANGE;
sFilterConfig.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
sFilterConfig.FilterID1 = 0x00;
sFilterConfig.FilterID2 = 0x1FFFFFFF;
if (HAL_FDCAN_ConfigFilter(&hfdcan1, &sFilterConfig) != HAL_OK)
{
Error_Handler();
}
/* Configure global filter on both FDCAN instances:
Filter all remote frames with STD and EXT ID
Reject non matching frames with STD ID and EXT ID */
if (HAL_FDCAN_ConfigGlobalFilter(&hfdcan1, FDCAN_REJECT, FDCAN_REJECT, FDCAN_FILTER_REMOTE, FDCAN_FILTER_REMOTE) != HAL_OK)
{
Error_Handler();
}
/* Activate Rx FIFO 0 new message notification on both FDCAN instances */
if (HAL_FDCAN_ActivateNotification(&hfdcan1, FDCAN_IT_RX_FIFO0_NEW_MESSAGE, 0) != HAL_OK)
{
Error_Handler();
}
if (HAL_FDCAN_ActivateNotification(&hfdcan1, FDCAN_IT_BUS_OFF, 0) != HAL_OK)
{
Error_Handler();
}
/* Configure and enable Tx Delay Compensation, required for BRS mode.
TdcOffset default recommended value: DataTimeSeg1 * DataPrescaler
TdcFilter default recommended value: 0 */
HAL_FDCAN_ConfigTxDelayCompensation(&hfdcan1, hfdcan1.Init.DataPrescaler * hfdcan1.Init.DataTimeSeg1, 0);
HAL_FDCAN_EnableTxDelayCompensation(&hfdcan1);
HAL_FDCAN_Start(&hfdcan1);
/* USER CODE END FDCAN1_Init 2 */
}
void HAL_FDCAN_MspInit(FDCAN_HandleTypeDef* fdcanHandle)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
if(fdcanHandle->Instance==FDCAN1)
{
/* USER CODE BEGIN FDCAN1_MspInit 0 */
/* USER CODE END FDCAN1_MspInit 0 */
/** Initializes the peripherals clocks
*/
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_FDCAN;
PeriphClkInit.FdcanClockSelection = RCC_FDCANCLKSOURCE_PCLK1;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
/* FDCAN1 clock enable */
__HAL_RCC_FDCAN_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**FDCAN1 GPIO Configuration
PA11 ------> FDCAN1_RX
PA12 ------> FDCAN1_TX
*/
GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF9_FDCAN1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* FDCAN1 interrupt Init */
HAL_NVIC_SetPriority(FDCAN1_IT0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(FDCAN1_IT0_IRQn);
HAL_NVIC_SetPriority(FDCAN1_IT1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(FDCAN1_IT1_IRQn);
/* USER CODE BEGIN FDCAN1_MspInit 1 */
/* USER CODE END FDCAN1_MspInit 1 */
}
}
void HAL_FDCAN_MspDeInit(FDCAN_HandleTypeDef* fdcanHandle)
{
if(fdcanHandle->Instance==FDCAN1)
{
/* USER CODE BEGIN FDCAN1_MspDeInit 0 */
/* USER CODE END FDCAN1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_FDCAN_CLK_DISABLE();
/**FDCAN1 GPIO Configuration
PA11 ------> FDCAN1_RX
PA12 ------> FDCAN1_TX
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_11|GPIO_PIN_12);
/* FDCAN1 interrupt Deinit */
HAL_NVIC_DisableIRQ(FDCAN1_IT0_IRQn);
HAL_NVIC_DisableIRQ(FDCAN1_IT1_IRQn);
/* USER CODE BEGIN FDCAN1_MspDeInit 1 */
/* USER CODE END FDCAN1_MspDeInit 1 */
}
}
// /* USER CODE BEGIN 1 */
/* FDCAN发送报文函数 */
HAL_StatusTypeDef FDCAN_SendMessage(uint32_t id, uint8_t Txdata[], FDCAN_DLC_T dataLength)
{
FDCAN_TxHeaderTypeDef TxHeader = {0};
TxHeader.Identifier = id; // 设置CAN报文的ID
// 检查发送帧ID的有效性
if(id < 0x800) {
TxHeader.IdType = FDCAN_STANDARD_ID;
}
else {
TxHeader.IdType = FDCAN_EXTENDED_ID;
if(id > 0x1FFFFFFF) {
printf("Error_Handler:id > 0x1FFFFFFF\r\n");
return HAL_ERROR;
}
}
// CAN发送格式的识别
if (dataLength > FDCAN_DLC_BYTES_8) {
TxHeader.FDFormat = FDCAN_FD_CAN;
}
else {
TxHeader.FDFormat = FDCAN_CLASSIC_CAN;
}
TxHeader.TxFrameType = FDCAN_DATA_FRAME; // 数据帧 FDCAN_REMOTE_FRAME//FDCAN_DATA_FRAME
// 数据长度(0-8字节,还有12,16,20,24,32,48,64)
TxHeader.DataLength = dataLength;
TxHeader.BitRateSwitch = FDCAN_BRS_OFF; // 不使用数据速率切换
// 发送报文
if (HAL_FDCAN_AddMessageToTxFifoQ(&hfdcan1, &TxHeader, Txdata) != HAL_OK)
{
printf("FDCAN send msg fail\r\n");
return HAL_ERROR; // 发送失败
}
return HAL_OK; // 发送成功
}
// FDCAN1 中断接收回调函数
void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo0ITs)
{
FDCAN_RxHeaderTypeDef RxHeader = {0};
uint8_t RxData[64] = {0}; // 支持最大64字节数据
uint8_t len = 0; // 接收到的数据长度
// 从FIFO0中读取接收到的消息
if (HAL_FDCAN_GetRxMessage(hfdcan, FDCAN_RX_FIFO0, &RxHeader, RxData) != HAL_OK)
{
Error_Handler();
}
for(int i = 0; i < (sizeof(RxData_len)/sizeof(RxData_len[0])); i++) {
if (RxData_len[i].dataLength == RxHeader.DataLength) {
len = RxData_len[i].datalen_num;
}
}
#if 1
printf("id: %d, DataLength: %d\r\n", RxHeader.Identifier, len);
printf("Received Data: ");
for (uint8_t i = 0; i < len; i++)
{
printf("0x%02X ", RxData[i]);
}
printf("\n");
#endif
// 可以根据需要检查其他中断标志位进行不同的处理
// 如果接收FIFO0已满
if ((RxFifo0ITs & FDCAN_IT_RX_FIFO0_FULL) != RESET)
{
// 处理FIFO满的情况
printf("FIFO 0 is full\n");
}
// 如果接收FIFO0消息丢失
if ((RxFifo0ITs & FDCAN_IT_RX_FIFO0_MESSAGE_LOST) != RESET)
{
// 处理消息丢失的情况
printf("Message lost in FIFO 0\n");
}
}
/* USER CODE END 1 */
fdcan.h
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file fdcan.h
* @brief This file contains all the function prototypes for
* the fdcan.c file
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __FDCAN_H__
#define __FDCAN_H__
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
extern FDCAN_HandleTypeDef hfdcan1;
/* USER CODE BEGIN Private defines */
typedef enum {
SEND_BYTES_0 = FDCAN_DLC_BYTES_0,
SEND_BYTES_1 = FDCAN_DLC_BYTES_1,
SEND_BYTES_2 = FDCAN_DLC_BYTES_2,
SEND_BYTES_3 = FDCAN_DLC_BYTES_3,
SEND_BYTES_4 = FDCAN_DLC_BYTES_4,
SEND_BYTES_5 = FDCAN_DLC_BYTES_5,
SEND_BYTES_6 = FDCAN_DLC_BYTES_6,
SEND_BYTES_7 = FDCAN_DLC_BYTES_7,
SEND_BYTES_8 = FDCAN_DLC_BYTES_8,
SEND_BYTES_12 = FDCAN_DLC_BYTES_12,
SEND_BYTES_16 = FDCAN_DLC_BYTES_16,
SEND_BYTES_20 = FDCAN_DLC_BYTES_20,
SEND_BYTES_24 = FDCAN_DLC_BYTES_24,
SEND_BYTES_32 = FDCAN_DLC_BYTES_32,
SEND_BYTES_48 = FDCAN_DLC_BYTES_48,
SEND_BYTES_64 = FDCAN_DLC_BYTES_64
} FDCAN_DLC_T;
typedef struct {
FDCAN_DLC_T dataLength;
uint8_t datalen_num;
} RxDataLen_t;
/* USER CODE END Private defines */
/* USER CODE BEGIN Prototypes */
void MX_FDCAN1_Init(void);
HAL_StatusTypeDef FDCAN_SendMessage(uint32_t id, uint8_t Txdata[], FDCAN_DLC_T dataLength);
/* USER CODE END Prototypes */
#ifdef __cplusplus
}
#endif
#endif /* __FDCAN_H__ */
参考文章:
CAN总线采样点原理与测试方法详解-CSDN博客
嵌入式Linux中的CAN(FD)总线——驱动配置 - 知乎 (zhihu.com)