Exercises and Solutions
Evaluate the limit :
lim
n
→
∞
(
1
+
1
2
+
1
3
+
⋯
+
1
n
)
1
n
\lim_{n \rightarrow \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}\right)^{\frac{1}{n}}
n → ∞ lim ( 1 + 2 1 + 3 1 + ⋯ + n 1 ) n 1 Solution :
1
≤
lim
n
→
∞
(
1
+
1
2
+
1
3
+
⋯
+
1
n
)
1
n
≤
lim
n
→
∞
n
1
n
=
1
1 \leq \lim_{n \rightarrow \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}\right)^{\frac{1}{n}} \leq \lim_{n \rightarrow \infty} n^{\frac{1}{n}} = 1
1 ≤ n → ∞ lim ( 1 + 2 1 + 3 1 + ⋯ + n 1 ) n 1 ≤ n → ∞ lim n n 1 = 1 By the Squeeze Theorem:
lim
n
→
∞
(
1
+
1
2
+
1
3
+
⋯
+
1
n
)
1
n
=
1
\lim_{n \rightarrow \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}\right)^{\frac{1}{n}} = 1
n → ∞ lim ( 1 + 2 1 + 3 1 + ⋯ + n 1 ) n 1 = 1
Evaluate the limit :
lim
n
→
∞
(
1
n
+
1
+
1
n
+
2
+
⋯
+
1
n
+
n
)
\lim_{n \rightarrow \infty} \left(\frac{1}{n + \sqrt{1}} + \frac{1}{n + \sqrt{2}} + \cdots + \frac{1}{n + \sqrt{n}}\right)
n → ∞ lim ( n + 1
1 + n + 2
1 + ⋯ + n + n
1 ) Solution :
1
=
lim
n
→
∞
∑
i
=
1
n
1
n
+
n
≤
lim
n
→
∞
∑
i
=
1
n
1
n
+
i
≤
lim
n
→
∞
∑
i
=
1
n
1
n
=
1
1 = \lim_{n \rightarrow \infty} \sum_{i=1}^n \frac{1}{n + \sqrt{n}} \leq \lim_{n \rightarrow \infty} \sum_{i=1}^n \frac{1}{n + \sqrt{i}} \leq \lim_{n \rightarrow \infty} \sum_{i=1}^n \frac{1}{n} = 1
1 = n → ∞ lim i = 1 ∑ n n + n
1 ≤ n → ∞ lim i = 1 ∑ n n + i
1 ≤ n → ∞ lim i = 1 ∑ n n 1 = 1 By the Squeeze Theorem:
lim
n
→
∞
∑
i
=
1
n
1
n
+
i
=
1
\lim_{n \rightarrow \infty} \sum_{i=1}^n \frac{1}{n + \sqrt{i}} = 1
n → ∞ lim i = 1 ∑ n n + i
1 = 1
Evaluate the limit :
lim
n
→
∞
∑
k
=
n
2
(
n
+
1
)
2
1
k
\lim_{n \rightarrow \infty} \sum_{k = n^2}^{(n + 1)^2} \frac{1}{\sqrt{k}}
n → ∞ lim k = n 2 ∑ ( n + 1 ) 2 k
1 Solution :
∑
k
=
n
2
(
n
+
1
)
2
1
(
n
+
1
)
2
≤
∑
k
=
n
2
(
n
+
1
)
2
1
k
≤
∑
k
=
n
2
(
n
+
1
)
2
1
n
2
\sum_{k = n^2}^{(n + 1)^2} \frac{1}{\sqrt{(n + 1)^2}} \leq \sum_{k = n^2}^{(n + 1)^2} \frac{1}{\sqrt{k}} \leq \sum_{k = n^2}^{(n + 1)^2} \frac{1}{\sqrt{n^2}}
k = n 2 ∑ ( n + 1 ) 2 ( n + 1 ) 2
1 ≤ k = n 2 ∑ ( n + 1 ) 2 k
1 ≤ k = n 2 ∑ ( n + 1 ) 2 n 2
1 Taking the limit:
lim
n
→
∞
2
≤
lim
n
→
∞
∑
k
=
n
2
(
n
+
1
)
2
1
k
≤
lim
n
→
∞
(
2
+
2
n
)
\lim_{n \rightarrow \infty} 2 \leq \lim_{n \rightarrow \infty} \sum_{k = n^2}^{(n + 1)^2} \frac{1}{\sqrt{k}} \leq \lim_{n \rightarrow \infty} \left(2 + \frac{2}{n}\right)
n → ∞ lim 2 ≤ n → ∞ lim k = n 2 ∑ ( n + 1 ) 2 k
1 ≤ n → ∞ lim ( 2 + n 2 ) By the Squeeze Theorem:
lim
n
→
∞
∑
k
=
n
2
(
n
+
1
)
2
1
k
=
2
\lim_{n \rightarrow \infty} \sum_{k = n^2}^{(n + 1)^2} \frac{1}{\sqrt{k}} = 2
n → ∞ lim k = n 2 ∑ ( n + 1 ) 2 k
1 = 2
Evaluate the limit :
lim
n
→
∞
1
⋅
3
⋅
5
⋅
⋯
⋅
(
2
n
−
1
)
2
⋅
4
⋅
6
⋅
⋯
⋅
(
2
n
)
\lim_{n \rightarrow \infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n - 1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot (2n)}
n → ∞ lim 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( 2 n ) 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 1 ) Solution : Since:
1
2
(
2
n
−
2
)
!
!
(
2
n
−
1
)
!
!
≤
(
2
n
−
1
)
!
!
(
2
n
)
!
!
≤
(
2
n
−
2
)
!
!
(
2
n
−
1
)
!
!
\frac{1}{2} \frac{(2n - 2)!!}{(2n - 1)!!} \leq \frac{(2n - 1)!!}{(2n)!!} \leq \frac{(2n - 2)!!}{(2n - 1)!!}
2 1 ( 2 n − 1 ) ! ! ( 2 n − 2 ) ! ! ≤ ( 2 n ) ! ! ( 2 n − 1 ) ! ! ≤ ( 2 n − 1 ) ! ! ( 2 n − 2 ) ! ! Then:
1
4
n
≤
(
(
2
n
−
1
)
!
!
(
2
n
)
!
!
)
2
≤
1
2
n
\frac{1}{4n} \leq \left(\frac{(2n - 1)!!}{(2n)!!}\right)^2 \leq \frac{1}{2n}
4 n 1 ≤ ( ( 2 n ) ! ! ( 2 n − 1 ) ! ! ) 2 ≤ 2 n 1 By the Squeeze Theorem, the limit exists:
lim
n
→
∞
1
⋅
3
⋅
5
⋅
⋯
⋅
(
2
n
−
1
)
2
⋅
4
⋅
6
⋅
⋯
⋅
(
2
n
)
=
0
\lim_{n \rightarrow \infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n - 1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot (2n)} = 0
n → ∞ lim 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( 2 n ) 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( 2 n − 1 ) = 0
Evaluate the limit :
lim
n
→
∞
3
n
2
+
4
n
−
1
n
2
+
1
\lim_{n \rightarrow \infty} \frac{3n^2 + 4n - 1}{n^2 + 1}
n → ∞ lim n 2 + 1 3 n 2 + 4 n − 1 Solution :
lim
n
→
∞
3
n
2
+
4
n
−
1
n
2
+
1
=
3
\lim_{n \rightarrow \infty} \frac{3n^2 + 4n - 1}{n^2 + 1} = 3
n → ∞ lim n 2 + 1 3 n 2 + 4 n − 1 = 3
Evaluate the limit :
lim
n
→
∞
n
3
+
2
n
2
−
3
n
+
1
2
n
3
−
n
+
3
\lim_{n \rightarrow \infty} \frac{n^3 + 2n^2 - 3n + 1}{2n^3 - n + 3}
n → ∞ lim 2 n 3 − n + 3 n 3 + 2 n 2 − 3 n + 1 Solution :
lim
n
→
∞
n
3
+
2
n
2
−
3
n
+
1
2
n
3
−
n
+
3
=
1
2
\lim_{n \rightarrow \infty} \frac{n^3 + 2n^2 - 3n + 1}{2n^3 - n + 3} = \frac{1}{2}
n → ∞ lim 2 n 3 − n + 3 n 3 + 2 n 2 − 3 n + 1 = 2 1
Evaluate the limit :
lim
n
→
∞
3
n
+
n
3
3
n
+
1
+
(
n
+
1
)
3
\lim_{n \rightarrow \infty} \frac{3^n + n^3}{3^{n + 1} + (n + 1)^3}
n → ∞ lim 3 n + 1 + ( n + 1 ) 3 3 n + n 3 Solution :
lim
n
→
∞
3
n
+
n
3
3
n
+
1
+
(
n
+
1
)
3
=
1
3
\lim_{n \rightarrow \infty} \frac{3^n + n^3}{3^{n + 1} + (n + 1)^3} = \frac{1}{3}
n → ∞ lim 3 n + 1 + ( n + 1 ) 3 3 n + n 3 = 3 1
Evaluate the limit :
lim
n
→
∞
(
n
2
+
1
n
−
1
)
sin
n
π
2
\lim_{n \rightarrow \infty} \left(\sqrt[n]{n^2 + 1} - 1\right) \sin \frac{n\pi}{2}
n → ∞ lim ( n n 2 + 1
− 1 ) sin 2 n π Solution :
lim
n
→
∞
(
n
2
+
1
n
−
1
)
sin
n
π
2
=
0
\lim_{n \rightarrow \infty} \left(\sqrt[n]{n^2 + 1} - 1\right) \sin \frac{n\pi}{2} = 0
n → ∞ lim ( n n 2 + 1
− 1 ) sin 2 n π = 0
Evaluate the limit :
lim
n
→
∞
n
(
n
+
1
−
n
)
\lim_{n \rightarrow \infty} \sqrt{n} \left(\sqrt{n + 1} - \sqrt{n}\right)
n → ∞ lim n
( n + 1
− n
) Solution :
lim
n
→
∞
n
(
n
+
1
−
n
)
=
1
2
\lim_{n \rightarrow \infty} \sqrt{n} \left(\sqrt{n + 1} - \sqrt{n}\right) = \frac{1}{2}
n → ∞ lim n
( n + 1
− n
) = 2 1
Evaluate the limit :
lim
n
→
∞
n
(
n
2
+
1
4
−
n
+
1
)
\lim_{n \rightarrow \infty} \sqrt{n} \left(\sqrt[4]{n^2 + 1} - \sqrt{n + 1}\right)
n → ∞ lim n
( 4 n 2 + 1
− n + 1
) Solution :
lim
n
→
∞
n
(
n
2
+
1
4
−
n
+
1
)
=
−
1
2
\lim_{n \rightarrow \infty} \sqrt{n} \left(\sqrt[4]{n^2 + 1} - \sqrt{n + 1}\right) = -\frac{1}{2}
n → ∞ lim n
( 4 n 2 + 1
− n + 1
) = − 2 1
Evaluate the limit :
lim
n
→
∞
1
n
!
n
\lim_{n \rightarrow \infty} \sqrt[n]{\frac{1}{n!}}
n → ∞ lim n n ! 1
Solution :
lim
n
→
∞
1
n
!
n
=
0
\lim_{n \rightarrow \infty} \sqrt[n]{\frac{1}{n!}} = 0
n → ∞ lim n n ! 1
= 0
Evaluate the limit :
lim
n
→
∞
(
1
−
1
2
2
)
(
1
−
1
3
2
)
⋯
(
1
−
1
n
2
)
\lim_{n \rightarrow \infty} \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right)
n → ∞ lim ( 1 − 2 2 1 ) ( 1 − 3 2 1 ) ⋯ ( 1 − n 2 1 ) Solution :
lim
n
→
∞
(
1
−
1
2
2
)
(
1
−
1
3
2
)
⋯
(
1
−
1
n
2
)
=
1
2
\lim_{n \rightarrow \infty} \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right) = \frac{1}{2}
n → ∞ lim ( 1 − 2 2 1 ) ( 1 − 3 2 1 ) ⋯ ( 1 − n 2 1 ) = 2 1
Evaluate the limit :
lim
n
→
∞
n
ln
n
n
\lim_{n \rightarrow \infty} \sqrt[n]{n \ln n}
n → ∞ lim n n ln n
Solution :
lim
n
→
∞
n
ln
n
n
=
0
\lim_{n \rightarrow \infty} \sqrt[n]{n \ln n} = 0
n → ∞ lim n n ln n
= 0
Evaluate the limit :
lim
n
→
∞
(
1
2
+
3
2
2
+
⋯
+
2
n
−
1
2
n
)
\lim_{n \rightarrow \infty} \left(\frac{1}{2} + \frac{3}{2^2} + \cdots + \frac{2n - 1}{2^n}\right)
n → ∞ lim ( 2 1 + 2 2 3 + ⋯ + 2 n 2 n − 1 ) Solution :
lim
n
→
∞
(
1
2
+
3
2
2
+
⋯
+
2
n
−
1
2
n
)
=
3
\lim_{n \rightarrow \infty} \left(\frac{1}{2} + \frac{3}{2^2} + \cdots + \frac{2n - 1}{2^n}\right) = 3
n → ∞ lim ( 2 1 + 2 2 3 + ⋯ + 2 n 2 n − 1 ) = 3
Given
lim
n
→
∞
a
n
=
a
\lim_{n \rightarrow \infty} a_n = a
lim n → ∞ a n = a and
lim
n
→
∞
b
n
=
b
\lim_{n \rightarrow \infty} b_n = b
lim n → ∞ b n = b , prove :
lim
n
→
∞
a
1
b
n
+
a
2
b
n
−
1
+
⋯
+
a
n
b
1
n
=
a
b
\lim_{n \rightarrow \infty} \frac{a_1 b_n + a_2 b_{n - 1} + \cdots + a_n b_1}{n} = ab
n → ∞ lim n a 1 b n + a 2 b n − 1 + ⋯ + a n b 1 = a b Proof : Let
a
n
=
a
+
α
n
a_n = a + \alpha_n
a n = a + α n and
b
n
=
b
+
β
n
b_n = b + \beta_n
b n = b + β n . Then:
∑
i
=
1
n
a
i
b
n
+
1
−
i
n
=
a
b
+
b
n
∑
i
=
1
n
α
i
+
a
n
∑
i
=
1
n
β
i
+
1
n
∑
i
=
1
n
α
i
β
n
−
i
+
1
\frac{\sum_{i=1}^n a_i b_{n + 1 - i}}{n} = ab + \frac{b}{n} \sum_{i=1}^n \alpha_i + \frac{a}{n} \sum_{i=1}^n \beta_i + \frac{1}{n} \sum_{i=1}^n \alpha_i \beta_{n - i + 1}
n ∑ i = 1 n a i b n + 1 − i = a b + n b i = 1 ∑ n α i + n a i = 1 ∑ n β i + n 1 i = 1 ∑ n α i β n − i + 1 Let
∣
α
n
∣
,
∣
β
n
∣
≤
M
|\alpha_n|, |\beta_n| \leq M
∣ α n ∣ , ∣ β n ∣ ≤ M . For
n
>
N
1
n > N_1
n > N 1 and
n
>
N
2
n > N_2
n > N 2 :
∣
1
n
∑
i
=
1
n
α
i
β
n
−
i
+
1
∣
<
∣
1
n
∑
i
=
1
N
α
i
β
n
−
i
+
1
∣
+
∣
1
n
∑
i
=
N
+
1
n
β
n
−
i
+
1
∣
ε
<
N
M
2
n
+
M
ε
\left| \frac{1}{n} \sum_{i=1}^n \alpha_i \beta_{n - i + 1} \right| < \left| \frac{1}{n} \sum_{i=1}^N \alpha_i \beta_{n - i + 1} \right| + \left| \frac{1}{n} \sum_{i=N+1}^n \beta_{n - i + 1} \right| \varepsilon < \frac{NM^2}{n} + M\varepsilon
∣ ∣ ∣ ∣ ∣ n 1 i = 1 ∑ n α i β n − i + 1 ∣ ∣ ∣ ∣ ∣ < ∣ ∣ ∣ ∣ ∣ n 1 i = 1 ∑ N α i β n − i + 1 ∣ ∣ ∣ ∣ ∣ + ∣ ∣ ∣ ∣ ∣ n 1 i = N + 1 ∑ n β n − i + 1 ∣ ∣ ∣ ∣ ∣ ε < n N M 2 + M ε Therefore:
lim
n
→
∞
∑
i
=
1
n
a
i
b
n
+
1
−
i
n
=
a
b
\lim_{n \rightarrow \infty} \frac{\sum_{i=1}^n a_i b_{n + 1 - i}}{n} = ab
n → ∞ lim n ∑ i = 1 n a i b n + 1 − i = a b