当前位置: 首页 > article >正文

ESP32移植Openharmony外设篇(10)inmp441麦克风

inmp441麦克风模块

模块简介

INMP441是一款高性能、低功耗的微型电容式MEMS麦克风,采用数字输出,广泛应用于智能手机、平板电脑、智能家居、可穿戴设备等场景。其核心特点包括:

  • 高信噪比(SNR):61 dBA,适合远场和近场语音采集。
  • 数字接口:支持24位I²S输出,可直接连接微控制器或DSP,无需额外编解码器。
  • 低功耗:工作电流仅1.4 mA,适用于电池供电设备。
  • 宽频率响应:60 Hz至15 kHz,覆盖人耳可听范围,音质自然清晰。
  • 小型封装:4.72 mm × 3.76 mm × 1 mm,适合高密度集成。

引脚介绍

INMP441模块的引脚配置如下(不同厂商可能略有差异):

引脚名称

符号

功能描述

电源输入

VDD

供电电压范围1.8V至3.3V,需严格匹配以保障性能。

接地

GND

公共地线,确保电路参考点稳定。

字选择信号

WS

I²S协议中的声道选择信号(左/右),由主机控制时序。

串行时钟

SCK

I²S时钟信号,由主机生成,控制数据传输速率。

数据输出

SD

数字音频数据输出,按I²S协议在时钟边沿传输。

声道选择

L/R

配置麦克风为左声道(低电平)或右声道(高电平),部分模块可能固定此引脚。


这里根据声道选择引脚可以分为单声道采集和双声道采集两种模式:

  • 单声道采集:连接单个INMP441,L/R引脚固定为左声道,仅使用WS信号的左声道周期。
  • 双声道系统:使用两个模块,分别配置为左/右声道,共享SCK和WS信号,通过分时复用SD线传输数据。

工作原理


INMP441基于MEMS电容传感技术:

  1. 声波转换:声波振动导致麦克风膜片与背极板间电容变化。
  2. 信号处理:内置ADC将模拟信号转换为24位数字数据,并通过抗混叠滤波器优化。
  3. 数字输出:通过I²S接口输出数据,主机按协议时序读取。

通信协议(I²S)

INMP441采用标准I²S协议,关键参数如下:

  • 数据格式:24位有符号整数,大端模式传输36。
  • 时序要求
    • WS(LRCLK):周期为64个SCK时钟,低电平传输左声道,高电平传输右声道。
    • SCK(BCLK):主机生成的时钟信号,数据在SCK的上升沿或下降沿被采样(具体取决于配置)。
    • 数据传输:从WS下降沿后的第2个SCK上升沿开始,连续传输24位数据。
  • 主从模式:INMP441为从机,需由微控制器(如STM32、ESP32)作为主机驱动时序

既然模块采用标准的I²S协议通信那就好办了,我们只需要使用ESPIDF官方封装好的I²S库就行!

tips:

这里要注意,我们移植到ESP32上的是ESPIDF V4.3.1,最新版的I²S API有所不同,读者可以根据自己使用的ESPIDF版本修改代码。

这里我们将V4.3.1和最新版的I²S文档都提供给大家:

I2S - ESP32 - — ESP-IDF Programming Guide v4.3.1 documentation

I2S - ESP32 - — ESP-IDF 编程指南 latest 文档

注意事项

  • 电气参数:供电电压需在1.8V–3.3V之间,避免超压损坏模块。
  • 信号完整性
    • SD线下拉:建议在SD引脚接10 kΩ下拉电阻,防止高阻态时误读高电平。
    • 时钟匹配:SCK频率需与主机配置一致,避免数据错位。
  • 声道配置:若使用双麦克风,需通过L/R引脚区分声道,并确保WS信号同步切换。
  • 声学环境:避免强噪声干扰,必要时添加物理隔音或软件滤波。
  • 开发调试
    • 使用示波器验证I²S时序,确保数据对齐。
    • 在代码中处理24位符号扩展,避免数据解析错误。

UDP通信

UDP简介
  1. 无连接通信:UDP在传输数据时不需要建立连接,直接将数据包发送出去。这使得UDP的传输效率比TCP更高,因为省去了建立连接所需的时间和资源。
  2. 不可靠传输:UDP不提供可靠性保证,在传输过程中可能会出现数据包丢失、重复、乱序等问题。然而,由于UDP的无连接特点,应用层可以自行处理这些问题,如通过重传机制来恢复丢失的数据包。
  3. 简单轻量:UDP的协议头部较小,只包含源端口、目的端口、长度、校验和以及数据等字段,这使得UDP的数据包结构相对简单且轻量。此外,UDP不进行流量控制和拥塞控制,进一步减少了协议开销。
  4. 低延迟:UDP不需要等待确认,因此可以实现较低的传输延迟。这使得UDP非常适合实时应用场景,如视频、音频、游戏等。

为什么我们使用UDP传输麦克风采集到的数据流?

  1. 实时性要求高:麦克风声音流属于实时音频数据,对延迟的要求非常高。UDP的低延迟特性使其成为传输实时音频数据的理想选择。相比之下,TCP虽然可靠但传输延迟较高,不适合实时音频传输。
  2. 容错性强:对于麦克风声音流来说,偶尔的数据包丢失或乱序并不会对整体音质造成太大影响。因为人耳对音频数据的容错性较强,即使丢失一些数据包也不会导致音频完全中断或失真。这使得UDP的不可靠传输特性在音频传输中变得可接受。
  3. 资源占用少:UDP的协议开销较小,传输效率高。在资源受限的环境中(如嵌入式设备或移动网络),使用UDP可以减少资源占用并提高传输效率。这对于实时音频传输来说非常重要,因为资源占用少意味着可以更快地处理和传输音频数据。

参考代码

inmp441.c
#include <stdio.h>
#include "cmsis_os2.h"
#include "ohos_run.h"
#include "esp_system.h"
#include "nvs_flash.h"
#include "esp_log.h"
#include "driver/i2s.h"
#include "driver/gpio.h"

#define INMP_SD GPIO_NUM_16  // 数据引脚
#define INMP_SCK GPIO_NUM_17 // 时钟引脚
#define INMP_WS GPIO_NUM_18  // 字选择引脚

void I2S_Init(void)
{
  // I2S 配置
  i2s_config_t i2s_config = {
      .mode = I2S_MODE_MASTER | I2S_MODE_RX,             // 主模式,接收模式
      .sample_rate = 16000,                              // 采样率 44.1kHz
      .bits_per_sample = I2S_BITS_PER_SAMPLE_16BIT,      // 24 位数据
      .channel_format = I2S_CHANNEL_FMT_ONLY_LEFT,       // 单声道(左声道)
      .communication_format = I2S_COMM_FORMAT_STAND_I2S, // 标准 I2S 格式
      .dma_buf_count = 8,                                // DMA 缓冲区数量
      .dma_buf_len = 1024,                               // 每个 DMA 缓冲区长度
      .use_apll = false,                                 // 不使用 APLL
  };

  // I2S 引脚配置
  i2s_pin_config_t pin_config = {
      .bck_io_num = INMP_SCK, // 时钟引脚
      .ws_io_num = INMP_WS,   // 字选择引脚
      .data_out_num = -1,     // 不使用输出引脚
      .data_in_num = INMP_SD, // 数据输入引脚
  };

  // 初始化 I2S 驱动
  i2s_driver_install(I2S_NUM_0, &i2s_config, 0, NULL);
  i2s_set_pin(I2S_NUM_0, &pin_config);
}

esp_err_t inmp441_read_data(void *read_data_buff, size_t size, size_t *bytes_read)
{
  // 读取 I2S 数据
  return i2s_read(I2S_NUM_0, read_data_buff, size, bytes_read, portMAX_DELAY);
}

void inmp441_data_process(uint8_t *data_buff, uint32_t len, int32_t *real_data)
{
  // 处理读取的数据
  for (uint16_t i = 0; i < len; i += 3)
  {
    *real_data = (data_buff[i] << 16) | (data_buff[i + 1] << 8) | (data_buff[i + 2]); // 拼接 3 个字节
    if (*real_data & 0x00800000)
    {
      *real_data |= 0xFF000000; // 如果是负数,补全符号位
    }
  }
}

void inmp441_free(uint8_t *data_buff)
{
  free(data_buff);
}

udp_test.c
/*
 * Copyright (c) 2022 Hunan OpenValley Digital Industry Development Co., Ltd.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <stdio.h>
#include "securec.h"
#include "cmsis_os2.h"
#include "ohos_run.h"
#include "lwip/sockets.h"
#include "lwip/ip_addr.h"
#include "wifi_device.h"
#include "esp_system.h"
#include "nvs_flash.h"
#include "esp_log.h"
#include "driver/gpio.h"

#define OPEN_WIFI_NAME "test"
#define SERVER_IP "192.168.31.238"
#define SERVER_PORT 8080
#define OD_DELAY_1000 1000
#define OD_DELAY_100 100
#define RECV_LEN 511
#define STACK_SIZE 4096
#define PRIORITY 25

osThreadId_t wifi_test_id = NULL;

/*
 * Copyright (c) 2022 Hunan OpenValley Digital Industry Development Co., Ltd.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define SYS_DELAY_TICKS 200
#define TASK_PRIO 25

void udp_connect_wifi(int *sock)
{
  struct sockaddr_in client_addr;
  char recv_data[512] = {0};
  int recv_data_len;
  WifiConnect(OPEN_WIFI_NAME);
  printf("start wifi_test test\r\n");

  while (1)
  {
    // 创建UDP socket
    *sock = socket(AF_INET, SOCK_DGRAM, 0);
    if (*sock < 0)
    {
      printf("Socket error\n");
      osDelay(OD_DELAY_100);
      continue;
    }

    // 设置服务器地址结构
    memset_s(&client_addr, sizeof(client_addr), 0, sizeof(client_addr));
    client_addr.sin_family = AF_INET;
    client_addr.sin_port = htons(SERVER_PORT);
    client_addr.sin_addr.s_addr = inet_addr(SERVER_IP);

    printf("try connect to server " SERVER_IP ":%d\n", SERVER_PORT);
    if (connect(*sock, (struct sockaddr *)&client_addr, sizeof(client_addr)) == -1)
    {
      printf("Connect error\n");
      closesocket(*sock);
      osDelay(OD_DELAY_1000);
      continue;
    }
    else
    {
      printf("UDP connected! \n");
      break;
    }
  }
}

void udp_send_mes(int sock, char *message, int message_len)
{
  send(sock, message, message_len, 0);
}

void udp_close(int sock)
{
  closesocket(sock);
}
wifi_connect.c
/*
 * Copyright (c) 2022 Hunan OpenValley Digital Industry Development Co., Ltd.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "securec.h"
#include "cmsis_os2.h"
#include "ohos_init.h"
#include "wifi_device.h"
#include "lwip/ip4_addr.h"
#include "lwip/netif.h"
#include "lwip/netifapi.h"
#include "wifi_error_code.h"

#define DEF_TIMEOUT 15
#define ONE_SECOND 1
#define SELECT_WLAN_PORT "wlan0"
#define SELECT_WIFI_SECURITYTYPE WIFI_SEC_TYPE_OPEN
#define STD_TIMEZONE_OFFSET (+8)
#define OD_DELAY_100 100
#define OD_DELAY_200 200

static int g_staScanSuccess = 0;
static int g_ConnectSuccess = 0;
static int ssid_count = 0;
static WifiErrorCode wifi_error;
static WifiEvent g_wifiEventHandler = {0};
static int wifi_sta_init_state = 0;
int sock_fd;
int addr_length;
const int timeZone = 8;

static void WiFiInit(void);
static void WaitScanResult(void);
static int WaitConnectResult(void);
static void OnWifiScanStateChangedHandler(int state, int size);
static void OnWifiConnectionChangedHandler(int state, WifiLinkedInfo *info);
static void OnHotspotStaJoinHandler(StationInfo *info);
static void OnHotspotStateChangedHandler(int state);
static void OnHotspotStaLeaveHandler(StationInfo *info);

void DisableWIFI(void)
{
  DisableWifi();
}

static void OnHotspotStaJoinHandler(StationInfo *info)
{
  (void)info;
  printf("STA join AP\n");
  return;
}

static void OnHotspotStaLeaveHandler(StationInfo *info)
{
  (void)info;
  printf("HotspotStaLeave:info is null.\n");
  return;
}

static void OnHotspotStateChangedHandler(int state)
{
  printf("HotspotStateChanged:state is %d.\n", state);
  return;
}

static void WiFiInit(void)
{
  printf("<--Wifi Init-->\r\n");
  g_wifiEventHandler.OnWifiScanStateChanged = OnWifiScanStateChangedHandler;
  g_wifiEventHandler.OnWifiConnectionChanged = OnWifiConnectionChangedHandler;
  g_wifiEventHandler.OnHotspotStaJoin = OnHotspotStaJoinHandler;
  g_wifiEventHandler.OnHotspotStaLeave = OnHotspotStaLeaveHandler;
  g_wifiEventHandler.OnHotspotStateChanged = OnHotspotStateChangedHandler;
  wifi_error = RegisterWifiEvent(&g_wifiEventHandler);
  if (wifi_error != WIFI_SUCCESS)
  {
    printf("register wifi event fail!\r\n");
  }
  else
  {
    printf("register wifi event succeed!\r\n");
  }
}

static void OnWifiScanStateChangedHandler(int state, int size)
{
  (void)state;
  if (size > 0)
  {
    ssid_count = size;
    g_staScanSuccess = 1;
  }
  return;
}

static int result;
int WifiConnect(const char *ssid, const char *psk)
{
  WifiScanInfo *info = NULL;
  unsigned int size = WIFI_SCAN_HOTSPOT_LIMIT;
  static struct netif *g_lwip_netif = NULL;
  WifiDeviceConfig select_ap_config = {0};
  osDelay(OD_DELAY_200);
  printf("<--System Init-->\r\n");
  WiFiInit();
  if (EnableWifi() != WIFI_SUCCESS)
  {
    printf("EnableWifi failed, wifi_error = %d\n", wifi_error);
    return -1;
  }
  if (IsWifiActive() == 0)
  {
    printf("Wifi station is not actived.\n");
    return -1;
  }
  info = malloc(sizeof(WifiScanInfo) * WIFI_SCAN_HOTSPOT_LIMIT);
  if (info == NULL)
  {
    printf("faild to create wifiscanInfo.\n");
    return -1;
  }
  do
  {
    ssid_count = 0;
    g_staScanSuccess = 0;
    Scan();
    WaitScanResult();
    wifi_error = GetScanInfoList(info, &size);
  } while (g_staScanSuccess != 1);
  strcpy_s(select_ap_config.ssid, sizeof(select_ap_config.ssid), ssid);
  printf("[%s][%s] \r\n", select_ap_config.ssid, select_ap_config.preSharedKey);
  select_ap_config.securityType = SELECT_WIFI_SECURITYTYPE;
  if (AddDeviceConfig(&select_ap_config, &result) == WIFI_SUCCESS)
  {
    if (ConnectTo(result) == WIFI_SUCCESS && WaitConnectResult() == 1)
    {
      printf("WiFi connect succeed!\r\n");
      wifi_sta_init_state = 1;
    }
  }
  osDelay(OD_DELAY_100);
  return 0;
}

static int WaitConnectResult(void)
{
  int ConnectTimeout = DEF_TIMEOUT;
  while (ConnectTimeout > 0)
  {
    sleep(1);
    ConnectTimeout--;
    if (g_ConnectSuccess == 1)
    {
      printf("WaitConnectResult:wait success[%d]s\n", (DEF_TIMEOUT - ConnectTimeout));
      break;
    }
  }
  if (ConnectTimeout <= 0)
  {
    printf("WaitConnectResult:timeout!\n");
    return 0;
  }
  return 1;
}

static void OnWifiConnectionChangedHandler(int state, WifiLinkedInfo *info)
{
  (void)info;
  if (state > 0)
  {
    g_ConnectSuccess = 1;
    printf("callback function for wifi connect\r\n");
  }
  else
  {
    g_ConnectSuccess = 0;
    printf("connect wifi_error, please check password, state:%d, try connect again\r\n", state);
    esp_wifi_connect();
  }
  return;
}

static void WaitScanResult(void)
{
  int scanTimeout = DEF_TIMEOUT;
  while (scanTimeout > 0)
  {
    sleep(ONE_SECOND);
    scanTimeout--;
    if (g_staScanSuccess == 1)
    {
      printf("WaitScanResult:wait success[%d]s\n", (DEF_TIMEOUT - scanTimeout));
      break;
    }
  }
  if (scanTimeout <= 0)
  {
    printf("WaitScanResult:timeout!\n");
  }
}
main.c
#include <stdio.h>
#include "cmsis_os2.h"
#include "ohos_run.h"
#include "esp_system.h"
#include "nvs_flash.h"
#include "esp_log.h"
#include "esp_rom_sys.h"

// 每次读取20ms的数据
#define DATA_LEN 1024 // 1500-28(IP/UDP头)

int socket = -1;

void LLM_Init()
{
  I2S_Init();
  udp_connect_wifi(&socket);
}

void LLM_Test()
{

  uint8_t *read_data_buff = (uint8_t *)malloc(sizeof(uint8_t) * DATA_LEN);
  size_t len;
  uint16_t packet_counter = 0;

  LLM_Init();
  while (1)
  {
    int ret = inmp441_read_data(read_data_buff, DATA_LEN, &len);
    if (ret == ESP_OK && len > 0)
    {
      // 发送音频数据
      udp_send_mes(socket, read_data_buff, len);
    }
  }
  udp_close();
}

void LLM_Task(void)
{
  osThreadAttr_t attr;

  attr.name = "llm_task";
  attr.attr_bits = 0U;
  attr.cb_mem = NULL;
  attr.cb_size = 0U;
  attr.stack_mem = NULL;
  attr.stack_size = 4096;
  attr.priority = osPriorityNormal;

  if (osThreadNew(LLM_Test, NULL, &attr) == NULL)
  {
    printf("[Inmp441Test] Failed to create LLM_Test!\n");
  }
}

OHOS_APP_RUN(LLM_Task);

BUILD.gn

# Copyright (c) 2022 Hunan OpenValley Digital Industry Development Co., Ltd.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import("//kernel/liteos_m/liteos.gni")
module_name = get_path_info(rebase_path("."), "name")
kernel_module(module_name){
    sources = [
        "udp_test.c",
        "wifi_connect.c",
        "inmp441.c",
        "main.c"
    ]
    include_dirs = [
        "//drivers/hdf_core/framework/include/platform/",
        "//drivers/hdf_core/framework/include/utils/",
        "//drivers/hdf_core/framework/support/platform/include/adc",
        "//drivers/hdf_core/adapter/khdf/liteos_m/osal/include/",
        "//drivers/hdf_core/framework/include/core/",
        "//drivers/hdf_core/framework/include/osal/",
        "//drivers/hdf_core/interfaces/inner_api/utils",
        "//device/soc/esp/esp32/components/driver/include",
        "//device/soc/esp/esp32/components/esp_adc_cal/include",
        "//drivers/hdf_core/framework/support/platform/include/gpio",   
        "//device/soc/esp/esp32/components/driver/esp32/include",
        "//foundation/communication/wifi_lite/interfaces/wifiservice",
        "//device/board/esp/esp32/liteos_m/hals/driver/wifi_lite",      
        "//device/soc/esp/esp32/components/esp_wifi/include",
        "//device/soc/esp/esp32/components/esp_event/include",
        "//device/soc/esp/esp32/components/esp_netif/include",
        "//device/soc/esp/esp32/components/tcpip_adapter/include",
        "//device/soc/esp/esp32/components/spi_flash/sim/stubs/freertos/include",
        "//device/soc/esp/esp32/components/osal/include/esp_osal",
        "//device/soc/esp/esp32/components/driver/include/driver",
        "//device/soc/esp/esp32/components/hal/include/hal"
    ]
}

代码调试

运行代码发现缺少i2s.h中定义的api函数,但是可以通过右键跳转找到函数的定义,而且能在components中找到i2s.h这个库,说明已经将其移植过来了,那到底是为什么编译提示函数未定义呢?这就跟openharmony的编译过程有关了,简单来说,移植来的库需要在BUILD.gn文件中参与编译才能生效。

我的思路是先检查工程文件的BUILD.gn中是否将移植的外设库进行了包含

发现已经包含了外设库的路径,那么再看看外设库的BUILD.gn文件是否将i2s的驱动进行了编译.

使用Ctrl+F搜索关键字i2s,果然在BUILD.gn文件中发现driver/i2s.c这行被注释掉,我们尝试去掉注释再编译。

发现还是会有报错:

我们跳转过去后,尝试取消esp_pm.h的依赖,注释掉之后又出现了一个新的报错:

在Ubuntu中grep 搜索一下这个变量,发现它是用来打印提示信息的,应该删掉这一段代码也不影响。

我们这里直接将其注释掉,发现程序能成功运行了!

我们可以通过网络助手NetAssist进行UDP协议的网络调试

这相当于监听本机上的所有1234端口的数据(这里需要与ESP32代码中udp的端口设置一致)

数据传输这边没问题,我们还可以编写一个python的上位机用来将数据流保存成wav文件实现录音功能!


http://www.kler.cn/a/584289.html

相关文章:

  • 基于PyTorch通信算子的分布式训练阻塞定位方法
  • 算法手记3
  • 算法日记40:最长上升子序列LIS(单调栈优化)n*log^n
  • DeepSeek一键生成可视化看板
  • 3.12-1 html讲解
  • QQuick-Binding的介绍
  • e2studio开发RA4L1(1)---开发板测试
  • 【Linux】动/静态库
  • 重生之我在学Vue--第10天 Vue 3 项目收尾与部署
  • Unity Lerp和InverseLerp函数用处
  • 【C++】每日一练(用队列实现栈)
  • 【fnOS飞牛云NAS本地部署跨平台视频下载工具MediaGo与远程访问下载视频流程】
  • VS Code 配置优化指南
  • 【TES817】基于XCZU19EG FPGA的高性能实时信号处理平台
  • 【从零开始学习计算机科学】数据库系统(七)并发控制技术
  • 元宇宙与数字孪生
  • 如何查看mysql某个表占用的空间大小
  • 深度学习 bert流程
  • ClickHouse的数据引擎:解锁大数据分析的奥秘
  • Netty基础—4.NIO的使用简介二