当前位置: 首页 > article >正文

【SegRNN 源码理解】验证集和测试集

       print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time))
            train_loss = np.average(train_loss)
            vali_loss = self.vali(vali_data, vali_loader, criterion)
            test_loss = self.vali(test_data, test_loader, criterion)

问题,验证集到底是什么?验证集和测试集不是一样的嘛,调用的函数都是一样的

  • 训练集‌:用于模型拟合的数据样本,模型通过训练集学习数据的模式。‌23
  • 验证集‌:在模型训练过程中单独留出的样本集,用于调整模型的超参数和初步评估模型的能力。
  • 测试集‌:用于评估最终模型的泛化能力,但不能用于调参或选择特征等算法相关的选择。

模型训练

Use GPU: cuda:0
>>>>>>>start training : illness_60_24_SegRNN_custom_ftM_sl60_pl24_dm512_dr0.0_rtgru_dwpmf_sl12_mae_test_0>>>>>>>>>>>>>>>>>>>>>>>>>>
train 593
val 74
test 170
Epoch: 1 cost time: 207.93248915672302
Epoch: 1, Steps: 37 | Train Loss: 0.6410040 Vali Loss: 0.6463686 Test Loss: 1.3848118
Validation loss decreased (inf --> 0.646369).  Saving model ...
Updating learning rate to 0.001
Epoch: 2 cost time: 62.998446226119995
Epoch: 2, Steps: 37 | Train Loss: 0.4989109 Vali Loss: 0.3734880 Test Loss: 1.0756294
Validation loss decreased (0.646369 --> 0.373488).  Saving model ...
Updating learning rate to 0.001
Epoch: 3 cost time: 9.611003160476685
Epoch: 3, Steps: 37 | Train Loss: 0.3889044 Vali Loss: 0.3518658 Test Loss: 1.0003682
Validation loss decreased (0.373488 --> 0.351866).  Saving model ...
Updating learning rate to 0.001
Epoch: 4 cost time: 9.890604734420776
Epoch: 4, Steps: 37 | Train Loss: 0.3497405 Vali Loss: 0.4116149 Test Loss: 1.0889241
EarlyStopping counter: 1 out of 10
Updating learning rate to 0.0008
Epoch: 5 cost time: 11.188161849975586
Epoch: 5, Steps: 37 | Train Loss: 0.3310404 Vali Loss: 0.3023584 Test Loss: 0.8752079
Validation loss decreased (0.351866 --> 0.302358).  Saving model ...
Updating learning rate to 0.0006400000000000002
Epoch: 6 cost time: 10.03389573097229
Epoch: 6, Steps: 37 | Train Loss: 0.2898096 Vali Loss: 0.3139473 Test Loss: 0.8356396
EarlyStopping counter: 1 out of 10
Updating learning rate to 0.0005120000000000001
Epoch: 7 cost time: 9.94393253326416
Epoch: 7, Steps: 37 | Train Loss: 0.2752131 Vali Loss: 0.2802873 Test Loss: 0.8298662
Validation loss decreased (0.302358 --> 0.280287).  Saving model ...
Updating learning rate to 0.0004096000000000001
Epoch: 8 cost time: 47.79346227645874
Epoch: 8, Steps: 37 | Train Loss: 0.2621685 Vali Loss: 0.2933615 Test Loss: 0.7996481
EarlyStopping counter: 1 out of 10
Updating learning rate to 0.0003276800000000001
Epoch: 9 cost time: 13.392791509628296
Epoch: 9, Steps: 37 | Train Loss: 0.2522859 Vali Loss: 0.2907325 Test Loss: 0.7990233
EarlyStopping counter: 2 out of 10
Updating learning rate to 0.0002621440000000001
Epoch: 10 cost time: 13.887414693832397
Epoch: 10, Steps: 37 | Train Loss: 0.2448694 Vali Loss: 0.2579939 Test Loss: 0.7900772
Validation loss decreased (0.280287 --> 0.257994).  Saving model ...
Updating learning rate to 0.0002097152000000001
Epoch: 11 cost time: 10.111633777618408
Epoch: 11, Steps: 37 | Train Loss: 0.2389001 Vali Loss: 0.2839487 Test Loss: 0.7887061
EarlyStopping counter: 1 out of 10
Updating learning rate to 0.0001677721600000001
Epoch: 12 cost time: 10.194474697113037
Epoch: 12, Steps: 37 | Train Loss: 0.2347271 Vali Loss: 0.2807631 Test Loss: 0.7819831
EarlyStopping counter: 2 out of 10
Updating learning rate to 0.00013421772800000008
Epoch: 13 cost time: 10.330410718917847
Epoch: 13, Steps: 37 | Train Loss: 0.2332735 Vali Loss: 0.2688113 Test Loss: 0.7899975
EarlyStopping counter: 3 out of 10
Updating learning rate to 0.00010737418240000006
Epoch: 14 cost time: 10.05665922164917
Epoch: 14, Steps: 37 | Train Loss: 0.2266295 Vali Loss: 0.2714401 Test Loss: 0.7808742
EarlyStopping counter: 4 out of 10
Updating learning rate to 8.589934592000005e-05
Epoch: 15 cost time: 9.99810791015625
Epoch: 15, Steps: 37 | Train Loss: 0.2243598 Vali Loss: 0.2903035 Test Loss: 0.7775844
EarlyStopping counter: 5 out of 10
Updating learning rate to 6.871947673600005e-05
Epoch: 16 cost time: 10.282510757446289
Epoch: 16, Steps: 37 | Train Loss: 0.2225707 Vali Loss: 0.2826172 Test Loss: 0.7801220
EarlyStopping counter: 6 out of 10
Updating learning rate to 5.497558138880004e-05
Epoch: 17 cost time: 10.422674179077148
Epoch: 17, Steps: 37 | Train Loss: 0.2194050 Vali Loss: 0.2822956 Test Loss: 0.7810600
EarlyStopping counter: 7 out of 10
Updating learning rate to 4.398046511104004e-05
Epoch: 18 cost time: 10.491711378097534
Epoch: 18, Steps: 37 | Train Loss: 0.2180462 Vali Loss: 0.2709097 Test Loss: 0.7783265
EarlyStopping counter: 8 out of 10
Updating learning rate to 3.518437208883203e-05
Epoch: 19 cost time: 10.142646074295044
Epoch: 19, Steps: 37 | Train Loss: 0.2161210 Vali Loss: 0.2623108 Test Loss: 0.7727545
EarlyStopping counter: 9 out of 10
Updating learning rate to 2.8147497671065623e-05
Epoch: 20 cost time: 9.860526323318481
Epoch: 20, Steps: 37 | Train Loss: 0.2158552 Vali Loss: 0.2736951 Test Loss: 0.7759588
EarlyStopping counter: 10 out of 10
Early stopping
>>>>>>>testing : illness_60_24_SegRNN_custom_ftM_sl60_pl24_dm512_dr0.0_rtgru_dwpmf_sl12_mae_test_0<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 

早停机制 


http://www.kler.cn/a/588289.html

相关文章:

  • 【C语言】函数和数组实践与应用:开发简单的扫雷游戏
  • 【Linux文件IO】系统IO中API描述和基本使用
  • MQTT客户端调试工具模拟MQTT设备接入物联网平台
  • 使用OpenCV与Python编写自己的俄罗斯方块小游戏
  • Java 中 String、StringBuffer 、StringBuffer正确使用方式
  • Java实现【将Markdown格式文本转换为纯文本】
  • 2021 年 12 月青少年软编等考 C 语言六级真题解析
  • Html5星空流星页面经验总结
  • C语言每日一练——day_9
  • AI绘画笔记--基础知识
  • Tomcat - Session 会话保持
  • 大模型的参数数量与学习的知识数量之间
  • CSS -position(定位)
  • 81.HarmonyOS NEXT 状态管理与响应式编程:@Observed深度解析
  • Redisson 实现分布式锁源码浅析
  • 【leetcode hot 100 230】二叉搜索树中第K小的元素
  • 【BERT和GPT的区别】
  • 向量数据库技术系列一-基本原理
  • C++博客分享
  • C++初阶——类和对象(三) 构造函数、析构函数