当前位置: 首页 > article >正文

AI学习第二天--监督学习 半监督学习 无监督学习

目录

1. 监督学习(Supervised Learning)

比喻:

技术细节:

形象例子:

2. 无监督学习(Unsupervised Learning)

比喻:

技术细节:

形象例子:

3. 半监督学习(Semi-Supervised Learning)

比喻:

技术细节:

形象例子:

4. 三者的对比与选择

表格总结:

5. 实际案例对比

案例:电商平台用户分群

6. 关键逻辑总结


1. 监督学习(Supervised Learning)

比喻

老师带着学生做题,每道题都有标准答案,学生通过练习学会解题方法。
核心有标签的数据(答案已知)。


技术细节
  • 数据形式:输入(X)+ 标签(Y)。
    • 例如:
      • 图像分类:图片(X) + 类别标签(Y,如“猫”或“狗”)。
      • 房价预测:房屋面积、位置(X) + 房价(Y)。
  • 目标:模型学习输入到标签的映射关系(如 f(X)=Yf(X)=Y)。
  • 常见算法线性回归、决策树、神经网络等。

形象例子

场景:学生学数学。

  1. 老师
    • 给出题目和答案(如“3+5=?” → 答案“8”)。
    • 学生通过大量练习(如1000道题+答案)掌握加法规律。
  2. 模型
    • 输入“3+5”,输出“8”。
    • 监督学习的关键:每一步都有明确的“正确答案”指导模型学习。

2. 无监督学习(Unsupervised Learning)

比喻

学生自己探索一堆物品,没有老师指导,只能通过观察找出物品的共同特征或分组
核心无标签的数据(没有答案,需自行发现模式)。


技术细节
  • 数据形式:仅有输入(X),无标签(Y)。
    • 例如:
      • 客户数据(年龄、收入、消费习惯) → 分群(如高收入用户群、低频购物群)。
      • 文本语料库 → 聚类为不同主题。
  • 目标:模型发现数据中的内在结构(如分组、降维)。
  • 常见算法K-Means聚类、PCA降维、自编码器等。

形象例子

场景:学生整理图书馆的书。

  1. 学生
    • 看到一堆书,但没有分类标签(如“科幻”“历史”)。
    • 通过观察书的内容、作者、关键词,将书分为“小说”“科技”“历史”等类别。
  2. 模型
    • 输入客户数据,输出“客户A属于高价值用户群”。
    • 无监督学习的关键:没有答案,模型自己“创造”规则。

3. 半监督学习(Semi-Supervised Learning)

比喻

学生大部分时间自己探索,但偶尔老师给出几个题目的答案,学生结合少量答案和大量无标签数据学习。
核心少量有标签数据 + 大量无标签数据


技术细节
  • 数据形式
    • 少量有标签数据(X, Y) + 大量无标签数据(仅X)。
    • 例如:
      • 医疗数据:100个标注的X光片(有疾病标签) + 10,000个未标注的X光片。
  • 目标:利用少量标签和大量无标签数据提升模型性能。
  • 常见方法
    • 标签传播:用少量标签数据推测无标签数据的标签。
    • 自训练:模型先用有标签数据训练,再预测无标签数据,将高置信度预测结果作为新标签。

形象例子

场景:学生学画画,但只有少量带标签的画作。

  1. 老师
    • 给出10张画作并标注“风景”“人物”等标签。
    • 其他1000张画作无标签。
  2. 学生
    • 先用10张带标签的画学习特征(如“人物画有五官”)。
    • 再观察无标签画作,推测它们的类别(如“这张画有山和树 → 可能是风景”)。
  3. 模型
    • 输入新画作,输出“风景”或“人物”。
    • 半监督学习的关键:用少量标签引导,大量无标签数据扩展知识。

4. 三者的对比与选择

表格总结
类型数据形式目标适用场景优缺点
监督学习X(输入) + Y(标签)学习输入到标签的映射分类、回归(如图像识别、房价预测)需大量标注数据,但模型性能通常更好。
无监督学习X(输入)无标签发现数据内在结构聚类、降维(如客户分群、文本主题分析)不需要标注数据,但结果可能需要人工解释。
半监督学习少量(X,Y) + 大量X结合有/无标签提升性能标注成本高但数据量大的场景(如医疗、图像)兼顾监督和无监督的优点,但实现复杂,需平衡两者。

5. 实际案例对比

案例:电商平台用户分群
  • 监督学习
    • 数据:用户行为数据(点击、购买) + 标签(“高价值用户”或“低价值用户”)。
    • 模型:训练分类器,预测新用户是否是高价值用户。
  • 无监督学习
    • 数据:用户行为数据(无标签)。
    • 模型:聚类为“高活跃用户群”“价格敏感用户群”等。
  • 半监督学习
    • 数据:100个标注用户(高/低价值) + 10,000个无标签用户。
    • 模型:用少量标签引导聚类,提升用户分群的准确性。

6. 关键逻辑总结

  • 监督学习有答案,学得准,但成本高
  • 无监督学习无答案,靠探索,成本低但需解释
  • 半监督学习少量答案+大量数据,性价比高,但需平衡

用一句话概括:
“监督学习是‘有答案的考试’,无监督学习是‘无答案的探险’,半监督学习是‘带着少量答案去探险’。”


http://www.kler.cn/a/590301.html

相关文章:

  • Maven的继承和聚合
  • 解决 Jupyter Notebook 中本地模块修改不生效的问题
  • 西门子PLC 博图(TIA Portal)与安川机器人进行Modbus TCP通信
  • QuickAPI:如何轻松实现数据库快速导入
  • Python----计算机视觉处理(Opencv:图像颜色替换)
  • Git下载安装(保姆教程)
  • 青少年编程与数学 02-011 MySQL数据库应用 02课题、MySQL数据库安装
  • C++高频(二)
  • uniapp实现页面左滑右滑切换内容
  • 【万字总结】构建现代Web应用的全方位性能优化体系学习指南(二)
  • UART转AHB总线接口参考设计介绍
  • CSS3学习教程,从入门到精通,CSS3 属性语法知识点及案例代码(4)
  • 学生选课管理系统数据库设计报告
  • C++学习笔记(二十一)——文件读写
  • 4.JVM-垃圾回收介绍
  • k8s环境部署
  • Kubernetes集群版本升级
  • 【开源免费】基于SpringBoot+Vue.JS失物招领平台(JAVA毕业设计)
  • vlc录制的视频伪时长修复方法
  • Python中存储数据——json模块