当前位置: 首页 > article >正文

第R9周:阿尔兹海默症诊断(优化特征选择版)

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

    文章目录

      • 1、导入数据
      • 2、数据处理
        • 2.1 患病占比
        • 2.2 相关性分析
        • 2.3 年龄与患病探究
      • 3、特征选择
      • 4、构建数据集
        • 4.1 数据集划分与标准化
        • 4.2 构建加载
      • 5、构建模型
      • 6、模型训练
        • 6.1 构建训练函数
        • 6.2 构建测试函数
        • 6.3 设置超参数
      • 7、模型训练
      • 8、模型评估
        • 8.1 结果图
        • 8.2 混淆矩阵

电脑环境:
语言环境:Python 3.8.0
深度学习:torch 2.5.1+cu124

1、导入数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, TensorDataset

plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
data_df = pd.read_csv('alzheimers_disease_data.csv')
data_df.head()

在这里插入图片描述

# 标签中文化
data_df.rename(columns={"Age": "年龄", "Gender": "性别", "Ethnicity": "种族", "EducationLevel": "教育水平", "BMI": "身体质量指数 (BMI)", "Smoking": "吸烟状况", "AlcoholConsumption": "酒精摄入量", "PhysicalActivity": "体育活动时间", 
                        "DietQuality": "饮食质量评分", "SleepQuality": "睡眠质量评分", "FamilyHistoryAlzheimers": "家族阿尔兹海默症病史", "CardiovascularDisease": "心血管疾病", "Diabetes": "糖尿病", "Depression": "抑郁病史", "HeadInjury": "头部受伤", "Hypertension": "高血压", 
                        "SystolicBP": "收缩压", "DiastolicBP": "舒张压", "CholesterolTotal": "胆固醇总量", "CholesterolLDL": "低密度脂蛋白胆固醇", "CholesterolHDL": "高密度脂蛋白胆固醇", "CholesterolTriglycerides": "甘油三酯", "MMSE": "简易精神状况检查得分", "FunctionalAssessment": "功能评估得分", "MemoryComplaints": "记忆抱怨", 
                        "BehavioralProblems": "行为问题", "ADL": "日常生活活动得分", "Confusion": "混乱与定向障碍", "Disorientation": "迷失方向", "PersonalityChanges": "人格变化", "DifficultyCompletingTasks": "完成任务困难", "Forgetfulness": "健忘", "Diagnosis": "诊断状态", "DoctorInCharge": "主治医生"},inplace=True)
data_df.columns

2、数据处理

data_df.isnull().sum()
	0
PatientID	0
年龄	0
性别	0
种族	0
教育水平	0
身体质量指数 (BMI)	0
吸烟状况	0
酒精摄入量	0
体育活动时间	0
饮食质量评分	0
睡眠质量评分	0
家族阿尔兹海默症病史	0
心血管疾病	0
糖尿病	0
抑郁病史	0
头部受伤	0
高血压	0
收缩压	0
舒张压	0
胆固醇总量	0
低密度脂蛋白胆固醇	0
高密度脂蛋白胆固醇	0
甘油三酯	0
简易精神状况检查得分	0
功能评估得分	0
记忆抱怨	0
行为问题	0
日常生活活动得分	0
混乱与定向障碍	0
迷失方向	0
人格变化	0
完成任务困难	0
健忘	0
诊断状态	0
主治医生	0

dtype: int64
from sklearn.preprocessing import LabelEncoder

# 创建LabelEncoder 实例
label_encoder = LabelEncoder()

# 对非数值型列进行标签编码
data_df['主治医生'] = label_encoder.fit_transform(data_df['主治医生'])

data_df.head()
	PatientID	年龄	性别	种族	教育水平	身体质量指数 (BMI)	吸烟状况	酒精摄入量	体育活动时间	饮食质量评分	...	记忆抱怨	行为问题	日常生活活动得分	混乱与定向障碍	迷失方向	人格变化	完成任务困难	健忘	诊断状态	主治医生
0	4751	73	0	0	2	22.927749	0	13.297218	6.327112	1.347214	...	0	0	1.725883	0	0	0	1	0	0	0
1	4752	89	0	0	0	26.827681	0	4.542524	7.619885	0.518767	...	0	0	2.592424	0	0	0	0	1	0	0
2	4753	73	0	3	1	17.795882	0	19.555085	7.844988	1.826335	...	0	0	7.119548	0	1	0	1	0	0	0
3	4754	74	1	0	1	33.800817	1	12.209266	8.428001	7.435604	...	0	1	6.481226	0	0	0	0	0	0	0
4	4755	89	0	0	0	20.716974	0	18.454356	6.310461	0.795498	...	0	0	0.014691	0	0	1	1	0	0	0
5 rows × 35 columns

2.1 患病占比

# 计算是否患病,人数
counts = data_df["诊断状态"].value_counts()
# 计算百分比
sizes = counts / counts.sum() * 100

# 绘制环形图
fig, ax = plt. subplots()
wedges, texts, autotexts = ax.pie(sizes, labels=sizes.index, autopct='%1.2ff%%', startangle=90, wedgeprops=dict(width=0.3))
plt.title("患病占比(1患病,Q没有患病)")
plt.show()

在这里插入图片描述

2.2 相关性分析

plt.figure(figsize=(40,35))
sns.heatmap(data_df.corr(), annot=True, fmt=".2f")
plt.show( )

在这里插入图片描述

2.3 年龄与患病探究

data_df['年龄'].min(), data_df['年龄'].max()

代码输出

(60, 90)

# 计算每一个年龄段患病人数
age_bins = range(60, 91)
grouped = data_df.groupby('年龄').agg({'诊断状态':['sum', 'size']})
grouped.columns=['患病','总人数']
grouped['不患病'] = grouped['总人数'] - grouped['患病'] #计算不患病的
# 设置绘图风格
sns.set(style="whitegrid")
plt.figure(figsize=(12, 5))
# 获取x轴标签(即年龄)
x = grouped.index.astype(str) # 将年龄转换为字符串格式便于显示
# 画图
plt.bar(x, grouped ["不患病"], 0.35, label="不患病", color='skyblue')
plt.bar(x,grouped["患病"], 0.35, label="患病", color='salmon')
# 设置标题
plt.title('患病年龄分布')
plt. xlabel("年龄")
plt.ylabel('人数')
plt.legend()
# 展示
plt.tight_layout()
plt.show()

在这里插入图片描述

3、特征选择

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report

data = data_df.copy()
X = data_df.iloc[:, 1:-2]
y = data_df.iloc[:, -2]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 标准化
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# 模型创建
tree = DecisionTreeClassifier()
tree.fit(X_train, y_train)
pred = tree.predict(X_test)
reporter = classification_report(y_test, pred)
print(reporter)

代码输出

             precision    recall  f1-score   support

           0       0.93      0.92      0.93       277
           1       0.86      0.87      0.87       153

    accuracy                           0.90       430
   macro avg       0.90      0.90      0.90       430
weighted avg       0.90      0.90      0.90       430
# 特征展示
feature_importances = tree.feature_importances_
features_rf = pd.DataFrame({'特征':X.columns, '重要度': feature_importances})
features_rf.sort_values(by='重要度', ascending=False, inplace=True)
plt.figure(figsize=(20,10))
sns.barplot(x='重要度', y='特征', data=features_rf)
plt.xlabel('重要度')
plt.ylabel('特征')
plt.title('随机森林特征图')
plt.show()

在这里插入图片描述

from sklearn.feature_selection import RFE

# 使用 RFE 来选择特征
rfe_selector = RFE(estimator=tree, n_features_to_select=20)
rfe_selector.fit(X, y)
X_new = rfe_selector.transform(X)
feature_names = np.array(X.columns)
selected_feature_names = feature_names[rfe_selector. support_]
print(selected_feature_names)

代码输出

['年龄' '种族' '身体质量指数 (BMI)' '酒精摄入量' '体育活动时间' '饮食质量评分' '睡眠质量评分' '心血管疾病' '糖尿病'
 '收缩压' '舒张压' '胆固醇总量' '低密度脂蛋白胆固醇' '高密度脂蛋白胆固醇' '甘油三酯' '简易精神状况检查得分' '功能评估得分'
 '记忆抱怨' '行为问题' '日常生活活动得分']

4、构建数据集

4.1 数据集划分与标准化

feature_selection =['年龄','种族', '教育水平', '身体质量指数 (BMI)', '酒精摄入量', '体育活动时间', '饮食质量评分', '睡眠质量评分', '心血管疾病',
 '收缩压', '舒张压' ,'胆固醇总量' ,'低密度脂蛋白胆固醇' ,'高密度脂蛋白胆固醇', '甘油三酯', '简易精神状况检查得分', '功能评估得分',
 '记忆抱怨' ,'行为问题', '日常生活活动得分']
X = data_df[feature_selection]

# 标准化,标准化其实对应连续性数据,分类数据不适合,由于特征中只有种族是分类数
sc = StandardScaler()
X = sc.fit_transform(X)

X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.long)
# 再次讲行特征诜择
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
X_train.shape, y_train.shape

代码输出

(torch.Size([1719, 20]), torch.Size([1719]))

4.2 构建加载

batch_size = 32
train_dl = DataLoader(
    TensorDataset(X_train, y_train),
    batch_size=batch_size,
    shuffle=True)
test_dl = DataLoader(
    TensorDataset(X_test, y_test),
    batch_size=batch_size,
    shuffle=False)

5、构建模型

class Rnn_Model(nn.Module):
    def __init__(self):
        super().__init__()

        self.rnn = nn.RNN(input_size=20, hidden_size=200, num_layers=1, batch_first=True)
        self.fc1 = nn.Linear(200, 50)
        self.fc2 = nn.Linear(50, 2)

    def forward(self, x):
        x, hidden1 = self.rnn(x)
        x          = self.fc1(x)
        x            = self.fc2(x)
        return x

device = 'cpu'
model = Rnn_Model().to(device)
model

6、模型训练

6.1 构建训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率

    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)

        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失

        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新

        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

6.2 构建测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

6.3 设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4
opt = torch.optim.Adam(model.parameters(), lr= learn_rate)

7、模型训练

epochs     = 50

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):

    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    # 获取当前的学习率
    lr = opt.state_dict()['param_groups'][0]['lr']

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
                          epoch_test_acc*100, epoch_test_loss, lr))

print('Done')

模型输出

Epoch: 1, Train_acc:64.1%, Train_loss:0.655, Test_acc:66.0%, Test_loss:0.611, Lr:1.00E-04
Epoch: 2, Train_acc:67.9%, Train_loss:0.583, Test_acc:70.5%, Test_loss:0.560, Lr:1.00E-04
Epoch: 3, Train_acc:75.6%, Train_loss:0.530, Test_acc:75.3%, Test_loss:0.512, Lr:1.00E-04
Epoch: 4, Train_acc:78.5%, Train_loss:0.481, Test_acc:80.7%, Test_loss:0.463, Lr:1.00E-04
Epoch: 5, Train_acc:82.1%, Train_loss:0.435, Test_acc:81.9%, Test_loss:0.426, Lr:1.00E-04
Epoch: 6, Train_acc:83.3%, Train_loss:0.410, Test_acc:84.4%, Test_loss:0.407, Lr:1.00E-04
Epoch: 7, Train_acc:83.5%, Train_loss:0.390, Test_acc:84.4%, Test_loss:0.398, Lr:1.00E-04
Epoch: 8, Train_acc:84.1%, Train_loss:0.381, Test_acc:84.2%, Test_loss:0.394, Lr:1.00E-04
Epoch: 9, Train_acc:84.0%, Train_loss:0.377, Test_acc:84.0%, Test_loss:0.395, Lr:1.00E-04
Epoch:10, Train_acc:84.6%, Train_loss:0.378, Test_acc:83.7%, Test_loss:0.396, Lr:1.00E-04
Epoch:11, Train_acc:84.2%, Train_loss:0.372, Test_acc:85.1%, Test_loss:0.400, Lr:1.00E-04
Epoch:12, Train_acc:84.7%, Train_loss:0.373, Test_acc:84.2%, Test_loss:0.396, Lr:1.00E-04
Epoch:13, Train_acc:85.0%, Train_loss:0.372, Test_acc:84.4%, Test_loss:0.395, Lr:1.00E-04
Epoch:14, Train_acc:84.5%, Train_loss:0.372, Test_acc:84.4%, Test_loss:0.398, Lr:1.00E-04
Epoch:15, Train_acc:84.5%, Train_loss:0.373, Test_acc:83.7%, Test_loss:0.398, Lr:1.00E-04
Epoch:16, Train_acc:84.6%, Train_loss:0.374, Test_acc:83.5%, Test_loss:0.397, Lr:1.00E-04
Epoch:17, Train_acc:84.9%, Train_loss:0.372, Test_acc:83.7%, Test_loss:0.395, Lr:1.00E-04
Epoch:18, Train_acc:84.8%, Train_loss:0.370, Test_acc:84.7%, Test_loss:0.395, Lr:1.00E-04
Epoch:19, Train_acc:84.8%, Train_loss:0.371, Test_acc:84.0%, Test_loss:0.398, Lr:1.00E-04
Epoch:20, Train_acc:84.9%, Train_loss:0.371, Test_acc:83.7%, Test_loss:0.400, Lr:1.00E-04
Epoch:21, Train_acc:84.8%, Train_loss:0.371, Test_acc:84.7%, Test_loss:0.398, Lr:1.00E-04
Epoch:22, Train_acc:85.0%, Train_loss:0.371, Test_acc:84.2%, Test_loss:0.398, Lr:1.00E-04
Epoch:23, Train_acc:84.7%, Train_loss:0.371, Test_acc:84.4%, Test_loss:0.397, Lr:1.00E-04
Epoch:24, Train_acc:85.2%, Train_loss:0.371, Test_acc:84.2%, Test_loss:0.398, Lr:1.00E-04
Epoch:25, Train_acc:84.6%, Train_loss:0.371, Test_acc:84.4%, Test_loss:0.396, Lr:1.00E-04
Epoch:26, Train_acc:84.6%, Train_loss:0.374, Test_acc:84.4%, Test_loss:0.395, Lr:1.00E-04
Epoch:27, Train_acc:84.8%, Train_loss:0.370, Test_acc:84.0%, Test_loss:0.395, Lr:1.00E-04
Epoch:28, Train_acc:85.2%, Train_loss:0.368, Test_acc:84.2%, Test_loss:0.394, Lr:1.00E-04
Epoch:29, Train_acc:85.0%, Train_loss:0.372, Test_acc:82.8%, Test_loss:0.395, Lr:1.00E-04
Epoch:30, Train_acc:84.8%, Train_loss:0.371, Test_acc:83.5%, Test_loss:0.399, Lr:1.00E-04
Epoch:31, Train_acc:84.9%, Train_loss:0.369, Test_acc:84.0%, Test_loss:0.401, Lr:1.00E-04
Epoch:32, Train_acc:84.9%, Train_loss:0.372, Test_acc:84.7%, Test_loss:0.398, Lr:1.00E-04
Epoch:33, Train_acc:84.6%, Train_loss:0.372, Test_acc:84.0%, Test_loss:0.397, Lr:1.00E-04
Epoch:34, Train_acc:85.1%, Train_loss:0.369, Test_acc:84.7%, Test_loss:0.396, Lr:1.00E-04
Epoch:35, Train_acc:84.8%, Train_loss:0.371, Test_acc:84.2%, Test_loss:0.396, Lr:1.00E-04
Epoch:36, Train_acc:84.7%, Train_loss:0.372, Test_acc:84.0%, Test_loss:0.394, Lr:1.00E-04
Epoch:37, Train_acc:84.5%, Train_loss:0.367, Test_acc:84.2%, Test_loss:0.396, Lr:1.00E-04
Epoch:38, Train_acc:84.6%, Train_loss:0.374, Test_acc:84.2%, Test_loss:0.396, Lr:1.00E-04
Epoch:39, Train_acc:85.2%, Train_loss:0.368, Test_acc:84.2%, Test_loss:0.401, Lr:1.00E-04
Epoch:40, Train_acc:84.4%, Train_loss:0.373, Test_acc:84.4%, Test_loss:0.393, Lr:1.00E-04
Epoch:41, Train_acc:84.9%, Train_loss:0.369, Test_acc:83.7%, Test_loss:0.396, Lr:1.00E-04
Epoch:42, Train_acc:84.6%, Train_loss:0.368, Test_acc:84.0%, Test_loss:0.396, Lr:1.00E-04
Epoch:43, Train_acc:84.6%, Train_loss:0.372, Test_acc:83.7%, Test_loss:0.399, Lr:1.00E-04
Epoch:44, Train_acc:85.7%, Train_loss:0.369, Test_acc:84.0%, Test_loss:0.403, Lr:1.00E-04
Epoch:45, Train_acc:85.7%, Train_loss:0.372, Test_acc:84.0%, Test_loss:0.401, Lr:1.00E-04
Epoch:46, Train_acc:84.9%, Train_loss:0.371, Test_acc:83.7%, Test_loss:0.400, Lr:1.00E-04
Epoch:47, Train_acc:85.0%, Train_loss:0.368, Test_acc:83.7%, Test_loss:0.403, Lr:1.00E-04
Epoch:48, Train_acc:84.9%, Train_loss:0.371, Test_acc:84.4%, Test_loss:0.399, Lr:1.00E-04
Epoch:49, Train_acc:85.2%, Train_loss:0.371, Test_acc:84.2%, Test_loss:0.401, Lr:1.00E-04
Epoch:50, Train_acc:85.2%, Train_loss:0.372, Test_acc:84.0%, Test_loss:0.400, Lr:1.00E-04
Done

8、模型评估

8.1 结果图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

from datetime import datetime
current_time = datetime.now()

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training Accuracy')
plt.xlabel(current_time)

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training=Loss')
plt.show()

在这里插入图片描述

8.2 混淆矩阵

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

pred = model(X_test.to(device)).argmax(1).cpu().numpy()

# 计算混淆矩阵
cm = confusion_matrix(y_test, pred)

plt.figure(figsize=(6,5))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')

# 标题
plt.title('Confusion Matrix', fontsize=12)
plt.xlabel('Predicted Label', fontsize=12)
plt.ylabel('True Labels', fontsize=10)

# 调整布局防止重叠
plt.tight_layout()

# 显示图形
plt.show()

在这里插入图片描述


http://www.kler.cn/a/613030.html

相关文章:

  • 美摄科技智能汽车车内实时AR特效方案,让出行充满乐趣
  • 神经网络知识
  • 【极速版 -- 大模型入门到进阶】LORA:大模型轻量级微调
  • 智能网联交通加速落地,光路科技TSN技术助推车路云一体化发展
  • 跟着尚硅谷学vue-day1
  • LeetCode 1492 n的第K个因子
  • 浅谈工商企业用电管理的分布式储能设计
  • window系统下安装elk
  • unity一个图片的物体,会有透明的效果
  • 【机器学习】从回声定位到优化引擎:蝙蝠算法在SVR超参数优化中的应用
  • Golang 的 GMP 调度机制常见问题及解答
  • Mininet--log.py-全局函数作用
  • Box86源码剖析(三)
  • JSP笔记
  • python多态、静态方法和类方法
  • 高速电路中的存储器应用与设计三
  • Vala 编程语言教程-继承
  • C 语言文件读写操作详解
  • Java Synchronized底层原理:Monitor机制、锁膨胀、自旋优化与偏向锁细节解密
  • 电气技术:未来自动化的心脏