当前位置: 首页 > article >正文

漫画:什么是快速排序算法?

这篇文章,以对话的方式,详细着讲解了快速排序以及排序排序的一些优化。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
一禅:归并排序是一种基于分治思想的排序,处理的时候可以采取递归的方式来处理子问题。我弄个例子吧,好理解点。例如对于这个数组arr[] = { 4,1,3,2,7,5,8,0}。
在这里插入图片描述
我们把它切割成两部分。

在这里插入图片描述
把左半部分和右半部分分别排序好。

在这里插入图片描述
之后再用一个临时数组,把这两个有序的子数组汇总成一个有序的大数组
在这里插入图片描述
排好之后在复制原源arr数组
在这里插入图片描述
这时,源数组就排序完毕了

在这里插入图片描述
在这里插入图片描述
一禅:左半部分和右半部分的排序相当于一个原问题的一个子问题的,也是采取同样的方式,把左半部分分成两部分,然后…

直到分割子数组只有一个元素或0个元素时,这时子数组就是有序的了(因为只有一个元素或0个,肯定是有序的啊),就不用再分割了,直接返回就可以了(当然,我在讲解这个归并排序的过程中,是假设你大致了解归并排序的前提下的了)

在这里插入图片描述
在这里插入图片描述
一禅:把一个n个元素的数组分割成只有一个元素的数组,那么我需要切logn次,每次把两个有序的子数组汇总成一个大的有序数组,所需的时间复杂度为O(n)。所以总的时间复杂度为O(nlogn)

快速排序

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
小白:那倒不是,快速排序的平均时间复杂度也是O(nlogn),不过他不需要像归并排序那样,还需要一个临时的数组来辅助排序,这可以节省掉一些空间的消耗,而且他不像归并排序那样,把两部分有序子数组汇总到临时数组之后,还得在复制回源数组,这也可以节省掉很多时间。

在这里插入图片描述
在这里插入图片描述
小白:快速排序也是和归并排序差不多,基于分治的思想以及采取递归的方式来处理子问题。例如对于一个待排序的源数组arr = { 4,1,3,2,7,6,8}。

在这里插入图片描述
我们可以随便选一个元素,假如我们选数组的第一个元素吧,我们把这个元素称之为”主元“吧。
在这里插入图片描述
然后将大于或等于主元的元素放在右边,把小于或等于主元的元素放在左边。
在这里插入图片描述
通过这种规则的调整之后,左边的元素都小于或等于主元,右边的元素都大于或等于主元,很显然,此时主元所处的位置,是一个有序的位置,即主元已经处于排好序的位置了。

主元把数组分成了两半部分。把一个大的数组通过主元分割成两小部分的这个操作,我们也称之为分割操作(partition)。

接下来,我们通过递归的方式,对左右两部分采取同样的方式,每次选取一个主元 元素,使他处于有序的位置。
在这里插入图片描述

那什么时候递归结束呢?当然是递归到子数组只有一个元素或者0个元素了
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

分割操作:单向调整

一禅:就按照你说的,选一个主元,你刚才选的是第一个元素为主元,这次我选最后一个为主元吧,哈哈。假设数组arr的范围为[left, right],即起始下标为left,末尾下标为right。源数组如下
在这里插入图片描述
然后可以用一个下标 i 指向 left,即 i = left ;用一个下标 j 也指向l eft,即j = left
在这里插入图片描述
接下来 j 从左向右遍历,遍历的范围为 [left, right-1] ,遍历的过程中,如果遇到比主元小的元素,则把该元素与 i 指向的元素交换,并且 i = i +1
在这里插入图片描述
当j指向1时,1比4小,此时把i和j指向的元素交换,之后 i++。
在这里插入图片描述
就这样让j一直向右遍历,直到 j = right
在这里插入图片描述
遍历完成之后,把 i 指向的元素与主元进行交换,交换之后,i 左边的元素一定小于主元,而 i 右边的元素一定大于或等于主元。这样,就 i 完成了一次分割了。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
一禅一言不合就把代码撸好了,第一版代码如下:

//分割操作:方法一,单向调整
int partion(int a[], int left, int right)
{
   int temp,pivot;//pivot存放主元
   int i,j;
   i = left;
   pivot = a[right];
   for(j = left;j < right;j++)
   {
       if(a[j] < pivot)
       {  //交换值
           temp = a[i];
           a[i] = a[j];
           a[j] = temp;
           i++;
       }
   }
   a[right] = a[i];
   a[i] = pivot;
   return i;//把主元的下标返回
}
//快速排序
void QuickSort(int a[], int left, int right)
{
   int center;
   int i,j;
   int temp;
   if(left < right)
   {
      center = partion(a,left,right);
      QuickSort(a,left,center-1);//左半部分
      QuickSort(a,center+1,right);//右半部分
   }
}

分割操作:双向调整

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
小白:对啊,因为你这调整方法,可能会出现对同一个元素,进行多次交换,例如刚才你在演示的那组元素,在j向右遍历交换的过程中:

第一次:8和1交换

第二次:8和3交换

第三次:8和2交换

8被重复交换了很多次
在这里插入图片描述
在这里插入图片描述
小白:其实,我们可以这样来调整元素。我还是用我的第一个元素充当主元吧。哈哈

源数组如下
在这里插入图片描述
然后用令变量i = left + 1,j = right。然后让 i 和 j 从数组的两边向中间扫描。
在这里插入图片描述
i 向右遍历的过程中,如果遇到大于或等于主元的元素时,则停止移动,j向左遍历的过程中,如果遇到小于或等于主元的元素则停止移动
在这里插入图片描述
当i和j都停止移动时,如果这时i < j,则交换 i, j 所指向的元素。此时 i < j,交换8和3
在这里插入图片描述
然后继续向中间遍历,直到i >= j。
在这里插入图片描述
此时i >= j,分割结束。

最后在把主元与 j 指向的元素交换(当然,与i指向的交换也行)。
在这里插入图片描述
这个时候,j 左边的元素一定小于或等于主元,而右边则大于或等于主元。

到此,分割调整完毕

代码如下:

方法二:双向扫描
int partition2( int[] arr, int left, int right)
{
 int pivot = arr[left];
 int i = left + 1;
 int j = right;
 while(true)
 {  
   //向右遍历扫描
   while(i <= j && arr[i] <= pivot) i++;
   //向左遍历扫描
   while(i <= j && arr[j] => pivot) j--;
   if(i >= j)
     break;
   //交换
   int temp = arr[i];
   arr[i] = arr[j];
   arr[j] = temp;
 }
 //把arr[j]和主元交换
 arr[left] = arr[j];
 arr[j] = povit;
 return j;
}

时间复杂度

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
小白:因为快速排序的最坏时间复杂度是O(n2)。

例如有可能会出现一种极端的情况,每次分割的时候,主元左边的元素个数都为0,而右边都为n-1个。这个时候,就需要分割n次了。而每次分割整理的时间复杂度为O(n),所以最坏的时间复杂度为O(n2)。

最好的情况就是每次分割都能够从数组的中间分割了,这样分割logn次就行了,此时的时间复杂度为O(nlogn)。

而平均时间复杂度,则是假设每次主元等概率着落在数组的任意位置,最后算出来的时间复杂度为O(nlogn),至于具体的计算过程,我就不展开了。

不过显然,像那种极端的情况是极少发生的。
在这里插入图片描述
在这里插入图片描述
小白:哈哈,之所以说它快,是因为它不像归并排序那样,需要额外的辅助空间,而且在分割调整的时候,不像归并排序那样,元素还要在辅助数组与源数组之间来回复制。

稳定性

在这里插入图片描述
在这里插入图片描述
一禅:不是啊,例如,在排序的过程中,主元在和j交换的时候是有可能破坏稳定性的,例如
在这里插入图片描述
把主元与j指向的元素进行交换
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

//随机选取主元
int random_partition(int[] arr, int left, int right)
{
 i = random(left, right);//随机选取一个位置
 //在把这个位置的元素与ar[left]交换
 swap(arr[i], arr[left]);
 
 return partition(arr, left, right);
}

终于写完,这个快排写了挺长时间,觉得有收获的话,可以转发支持一波哦(´-ω-`)。

更多排序算法文章

1. 漫画:什么是冒泡排序算法?

2. 漫画:什么是选择排序算法?

3. 漫画:什么是插入排序算法?

4. 漫画:什么是希尔排序算法?

5. 漫画:什么是归并排序算法?

6. 漫画:什么是快速排序算法?

7. 漫画:什么是堆排序算法?

8. 漫画:什么是基数排序算法?

9. 漫画:什么是外部排序?

10. 什么是计数排序?

11. 十大排序算法极简汇总篇

推荐阅读

下载破 2w+,在校生必看,《程序员内功修炼》第二版出炉

从双非到大厂,帅地写了一本原创PDF送给大家

一个帮你拿offer的校招网站

算法刷题路线(系统+全面)

作者简介:我是帅地,校招拿到过不少大厂offer,毕业去了腾讯研发岗,毕业半年整到人生第一个 100 万,目前专注于写大学规划 + 校招求职相关的内容,著有个人原创网站 PlayOffer。


http://www.kler.cn/a/978.html

相关文章:

  • 七大排序算法(Java,便于理解)
  • nacos环境搭建以及SpringCloudAlibaba脚手架启动环境映射开发程序
  • 论文笔记(四十七)Diffusion policy: Visuomotor policy learning via action diffusion(下)
  • 为AI聊天工具添加一个知识系统 之32 三“中”全“会”:推理式的ISA(父类)和IOS(母本)以及生成式CMN (双亲委派)之1
  • Windows安装ES单机版设置密码
  • day06_Spark SQL
  • 一文读懂Js中的this指向
  • 像ChatGPT玩转Excel数据
  • 前端性能优化之HTTP缓存
  • vue以及前端css组件
  • 【C++笔试强训】第三十二天
  • [pytorch]thop计算模型算力和参数量
  • 【深度解刨C语言】符号篇(全)
  • Spring Cloud(微服务)学习篇(五)
  • 【Linux】网络编程套接字(下)
  • 【Python入门第三十三天】Python 字符串格式化
  • 普通Java工程师 VS 优秀架构师
  • Docekr三剑客之 Docekr compose
  • python 内置函数和多线程
  • 手把手学会DFS (递归入门)
  • Python直接复制已有的venv虚拟环境以创建新的虚拟环境
  • 【巨人的肩膀】JAVA面试总结(六)
  • C++继承[万字详解]
  • new Function 得到的都是匿名函数,怎么得到一个具名函数对象?
  • TCP UDP详解
  • 【多微电网】含多微电网租赁共享储能的配电网博弈优化调度(Matlab代码实现)