算法题:图的表示形式与遍历框架
图的基本概念
在数据结构和算法上,图的数据表示一般使用邻接表和邻接矩阵的形式。
比如:
邻接表和邻接矩阵存储如下。邻接表是用vector[vector[i]] 存储每个节点指向的节点,邻接矩阵是用一个二维矩阵matrix[i][j]表示,如果第数据的i维和j维元素为true(黄色),表示这里存在节点i到j的连接。
和邻接矩阵相比,邻接表更省存储空间,但是无法快速判断两个节点是否相连(比如判断i到j, 需要找到i个节点对应的vector,然后判断j是否存在。
再明确一个图论中特有的度(degree)的概念,在无向图中,「度」就是每个节点相连的边的条数。由于有向图的边有方向,所以有向图中每个节点「度」被细分为入度(indegree)和出度(outdegree),比如上面的有向图中,节点3的出度为3(有3条边指向它),出度为1(有1条边指向别的节点)。
加权有向图值的是,有向图中节点之间的连接加了权重值,比如在邻接矩阵中,matrix[i][j]不再是布尔值,而是一个int值,0表示无连接,其他值表示连接权重。
图的遍历
各种数据结构被发明出来,无非就是为了遍历和访问,遍历是所有数据结构的基础。
图的遍历可以参考多叉树的DFS遍历框架
/* 多叉树遍历框架 */
void traverse(TreeNode* root) {
if (root == nullptr) return;
// 前序位置
for (TreeNode* child : root->children) {
traverse(child);
}
// 后序位置
}
图和多叉树最大的区别是,图是可能包含环的,你从图的某一个节点开始遍历,有可能走了一圈又回到这个节点,而树不会出现这种情况,从某个节点出发必然走到叶子节点,绝不可能回到它自身。
所以图如果包含环,需要一个visited数组进行辅助。 onPath
数组的操作很像回溯算法套路的做「做选择」和「撤销选择」,区别在于位置:回溯算法的「做选择」和「撤销选择」在 for 循环里面,而对 onPath
数组的操作在 for 循环外面。
// 记录被遍历过的节点
vector<bool> visited;
// 记录从起点到当前节点的路径
vector<bool> onPath;
/* 图遍历框架 */
void traverse(Graph graph, int s) {
if (visited[s]) return;
// 经过节点 s,标记为已遍历
visited[s] = true;
// 做选择:标记节点 s 在路径上
onPath[s] = true;
for (int neighbor : graph.neighbors(s)) {
traverse(graph, neighbor);
}
// 撤销选择:节点 s 离开路径
onPath[s] = false;
}
示例
来看力扣第 797 题「 所有可能路径」,力扣
题目输入一幅有向无环图,这个图包含 n
个节点,标号为 0, 1, 2,..., n - 1
,请你计算所有从节点 0
到节点 n - 1
的路径。
输入的这个 graph
其实就是「邻接表」表示的一幅图,graph[i]
存储这节点 i
的所有邻居节点。
比如输入 graph = [[1,2],[3],[3],[]]
,就代表下面这幅图:
class Solution {
// 记录所有路径
vector<vector<int>> res;
public:
vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
// 维护递归过程中经过的路径
vector<int> path;
traverse(graph, 0, path);
return res;
}
/* 图的遍历框架 */
void traverse(vector<vector<int>>& graph, int s, vector<int>& path) {
// 添加节点 s 到路径
path.push_back(s);
int n = graph.size();
if (s == n - 1) {
// 到达终点
res.push_back(path);
// 可以在这直接 return,但要正确维护 path
// path.pop_back();
// return;
// 不 return 也可以,因为图中不包含环,不会出现无限递归
}
// 递归每个相邻节点
for (int v : graph[s]) {
traverse(graph, v, path);
}
// 从路径移出节点 s
path.pop_back();
}
};
内容来源:图论基础及遍历算法 :: labuladong的算法小抄