当前位置: 首页 > article >正文

在卷积神经网络中真正占用内存的是什么

在卷积神经网络(CNN)中,占用内存的主要部分包括以下几个方面:

1. 模型参数(Weights and Biases)

CNN 中的权重和偏置(即模型的参数)通常是占用内存的最大部分。具体来说:

  • 卷积层权重:每个卷积核的大小是 (kernel_height, kernel_width, input_channels, output_channels),这决定了卷积核的数量和每个卷积核的大小。每个卷积核都有一组权重,通常是浮点数(例如 float32float64),所以这些权重会占用大量内存。
  • 偏置项:每个卷积层(以及全连接层)通常都有一个偏置项,偏置项的数量等于输出通道数(对于卷积层是 output_channels,对于全连接层是输出单元数)。这些偏置项一般占用的内存相对较少,但在大规模网络中仍然有一定影响。

例如,一个卷积层如果有 64 个卷积核,每个卷积核的大小为 (3, 3, 3)(假设输入是 RGB 图像),那么权重矩阵的大小为 64 * 3 * 3 * 3 = 1728,每个浮点权重占用 4 字节(float32),那么该层的权重占用内存为 1728 * 4B = 6912B

2. 中间特征图(Feature Maps)

每一层的输出(即中间的特征图)通常是卷积层或池化层的输出。这些特征图占用内存的方式和层的输入尺寸、卷积核数量、批次大小等因素有关。

  • 特征图的大小:对于卷积层,特征图的尺寸取决于输入尺寸、卷积核尺寸、步幅(stride)和填充(padding)方式。对于池化层,特征图的尺寸由池化窗口和步幅决定。
  • 批次大小(Batch Size):每次输入的样本数量对内存占用影响也很大。特别是在训练时,较大的批次会导致更多的内存消耗,因为每个样本都需要存储对应的特征图。

举个例子,如果输入图像的尺寸为 (32, 32, 3),卷积层输出特征图大小为 (30, 30, 64),并且批次大小为 32,那么中间特征图的内存占用为:

30 × 30 × 64 × 32 × 4  bytes = 12 , 288 , 000  bytes = 12 M B 30 \times 30 \times 64 \times 32 \times 4 \text{ bytes} = 12,288,000 \text{ bytes} = 12 MB 30×30×64×32×4 bytes=12,288,000 bytes=12MB

这个值随着网络的深度和批次大小的增加而增大。

3. 激活值(Activations)

每一层的激活值也需要占用内存。激活值通常存储在前向传播过程中计算出的特征图中,这些数据在反向传播时用来计算梯度和更新权重。激活值的大小与特征图相同,因此它们占用的内存和特征图的内存是一样的。

4. 梯度(Gradients)

在训练过程中,每一层的梯度(即损失函数关于每一层参数的导数)也需要存储。这些梯度通常具有与模型参数相同的形状,因此,权重和偏置的梯度占用的内存大小与模型参数一样。

例如,假设某卷积层有 64 个卷积核,每个卷积核大小为 (3, 3, 3),则该层的梯度大小与权重大小相同,也是 64 * 3 * 3 * 3,需要存储梯度值(同样为浮点数),这会占用额外的内存。

5. 优化器状态(Optimizer States)

在使用优化算法(如 Adam)时,优化器会为每个参数保存额外的状态信息(如一阶矩估计、二阶矩估计等)。这些状态信息的大小通常是与模型参数一样的。因此,优化器的状态信息也是内存占用的一个重要因素。

  • 例如,Adam 优化器会存储每个参数的梯度平均值和平方平均值,这两者的内存占用是模型参数的两倍。

6. 输入数据(Input Data)

训练时,输入数据(如图像)也会占用内存。在每次迭代中,批次输入数据会被加载到内存中,这部分内存占用与批次大小、输入尺寸和数据类型相关。

举个例子,如果每个图像的尺寸为 (224, 224, 3),并且批次大小为 32,那么输入数据的内存占用为:

224 × 224 × 3 × 32 × 4  bytes = 602 , 112  bytes = 0.6 M B 224 \times 224 \times 3 \times 32 \times 4 \text{ bytes} = 602,112 \text{ bytes} = 0.6 MB 224×224×3×32×4 bytes=602,112 bytes=0.6MB

7. 其他数据结构

CNN 中可能还涉及到一些额外的数据结构,例如用于保存模型结构、层的配置等元数据,这些数据结构通常不会占用大量内存,但在非常深的网络中也有可能占用一定内存。


总结

CNN 中占用内存的主要部分包括:

  1. 模型参数:权重和偏置。
  2. 中间特征图:每一层的输出。
  3. 激活值:每一层计算出的激活值。
  4. 梯度:反向传播计算的梯度。
  5. 优化器状态:如 Adam 等优化算法中的额外状态信息。
  6. 输入数据:训练时加载到内存中的输入数据。
  7. 其他辅助数据:如模型的元数据和层的配置。

这些部分决定了模型在训练和推理过程中的内存占用,尤其是在训练时,随着网络深度、批次大小和模型复杂度的增加,内存消耗会显著增加。


http://www.kler.cn/a/394024.html

相关文章:

  • Nuxt.js 应用中的 schema:beforeWrite 事件钩子详解
  • 【FFmpeg】FFmpeg 函数简介 ③ ( 编解码相关函数 | FFmpeg 源码地址 | FFmpeg 解码器相关 结构体 和 函数 )
  • 解锁微前端的优秀库
  • 量化交易系统开发-实时行情自动化交易-3.4.2.2.Okex交易数据
  • Window下PHP安装最新sg11(php5.3-php8.3)
  • 如何在算家云搭建Peach-9B-8k-Roleplay(文本生成)
  • Oracle ADB 导入 BANK_GRAPH 的学习数据
  • Spring Boot编程训练系统:设计与实现要点
  • 使用python-Spark使用的场景案例具体代码分析
  • TR3:Pytorch复现Transformer
  • 12306中如何知道用户使用的哪种登录方式?(用户名、邮箱、手机号)
  • 力扣-Mysql-3328-查找每个州的城市 II(中等)
  • 【Android】View—基础知识,滑动,弹性滑动
  • 从前端react动画引发到计算机底层的思考
  • faiss 提供了多种索引类型
  • 开源音乐分离器Audio Decomposition:可实现盲源音频分离,无需外部乐器分离库,从头开始制作。将音乐转换为五线谱的程序
  • AutoHotKey自动热键AHK-正则表达式
  • 蓝队基础4 -- 安全运营与监控
  • 15分钟学 Go 第 53 天 :社区资源与学习材料
  • vscode vite+vue3项目启动调试
  • 解决VsCode无法跳转问题
  • Jmeter基础篇(24)Jmeter目录下有哪些文件夹是可以删除,且不影响使用的呢?
  • 小试银河麒麟系统OCR软件
  • 股指期货套利交易详解
  • 【JavaScript 网页设计实例教程:电商+视频】详细教程
  • cooladmin 后端 查询记录