当前位置: 首页 > article >正文

io,nio,aio区别

文章目录

  • 前言
  • io类型介绍
    • 同步阻塞io
    • 同步非阻塞io
    • io多路复用
    • 异步io
  • 普通io
  • nio
    • Channel
      • Channel实现
      • 基本的 Channel代码 示例
    • Buffer
      • Buffer的基本用法
      • Buffer的capacity,position和limit
        • capacity
        • position
        • limit
      • Buffer的类型
      • Buffer的分配
      • 向Buffer中写数据
      • 从Buffer中读取数据
    • Selector
      • 为什么使用Selector?
      • Selector的创建
      • 向Selector注册通道
      • SelectionKey
      • 通过Selector选择通道
  • 总结

前言

说起io,大家一定十分的熟悉。因为不管是什么编程语言,都离不开io操作。不管是对本地文件的io操作,还是网络的io流,在日常的程序开发中都是十分的常见。那么今天我们就详细的介绍一下io,nio,aio的区别,让大家对io操作有个比较深刻的理解。
UNIX 系统下的 I/O 模型有 5 种:同步阻塞 I/O、同步非阻塞 I/O、I/O 多路复用、信号驱动 I/O 和异步 I/O。而所谓的io,nio,aio只是他们的设计和使用的io模型不同。

io类型介绍

这里我们主要介绍java中使用到的io模型
首先我们介绍io模型之前,大家要清楚一个io操作大致流程是怎样的。这里我们拿网络io进行举例。当一个网络io开始的时候,将会设计到两个对象,一个是调用io的用户线程,还有一个是读取数据的操作系统内核,一个进程的地址地址空间分为用户空间和内核空间。用户线程不能直接访问内核空间。
当用户发起io操作的时候,会经历两个步骤
1.用户线程等待内核从网卡读取数据到内核空间
2.内核将数据从内核空间拷贝到用户空间
各个io模型的不同就是实现这个两步骤方式不一样

同步阻塞io

同步阻塞 I/O:用户线程发起 read 调用后就阻塞了,让出 CPU。内核等待网卡数据到来,把数据从网卡拷贝到内核空间,接着把数据拷贝到用户空间,再把用户线程叫醒。
在这里插入图片描述

同步非阻塞io

同步阻塞型io:用户线程不断的发起调用read,在数据读取到内核空间之前,read一直返回失败,直到数据进入内核空间,才返回成功,但是在等内核将数据从内核空间拷贝到用户空间的过程仍是阻塞。直到数据到了用户空间,该线程才会从阻塞状态唤醒。
在这里插入图片描述

io多路复用

io多路复用:io多路复用将读取操作分为了两个步骤,首先是让select询问数据是否准备好了,数据准备好了,也就是数据到了内核空间,才开始发起read调用。在等待数据从内核空间拷贝到用户空间这段时间里,线程还是阻塞的。那为什么叫 I/O 多路复用呢?因为一次 select 调用可以向内核查多个数据通道(Channel)的状态,所以叫多路复用。
在这里插入图片描述

异步io

异步io:用户再发起read调用的时候,同时注册一个回调函数,然后read立即返回,等到数据到达用户空间之后,直接执行回调函数即可。整个过程没有一点阻塞。
在这里插入图片描述

普通io

普通io就是大家日常使用的java io,例如 inputstream等,都是普通的io,使用的时候,就会阻塞整个线程,直到数据拷贝到用户空间为止。

#aio
服务器端

import java.io.IOException;  
import java.net.InetSocketAddress;  
import java.nio.ByteBuffer;  
import java.nio.channels.AsynchronousServerSocketChannel;  
import java.nio.channels.AsynchronousSocketChannel;  
import java.nio.channels.CompletionHandler;  
import java.util.concurrent.ExecutionException;  
import java.util.concurrent.Future;  
import java.util.concurrent.TimeUnit;  
import java.util.concurrent.TimeoutException;  
  
public class AIOEchoServer {  
  
    public final static int PORT = 8001;  
    public final static String IP = "127.0.0.1";  
  
      
    private AsynchronousServerSocketChannel server = null;  
      
    public AIOEchoServer(){  
        try {  
            //同样是利用工厂方法产生一个通道,异步通道 AsynchronousServerSocketChannel  
            server = AsynchronousServerSocketChannel.open().bind(new InetSocketAddress(IP,PORT));  
        } catch (IOException e) {  
            e.printStackTrace();  
        }  
    }  
      
    //使用这个通道(server)来进行客户端的接收和处理  
    public void start(){  
        System.out.println("Server listen on "+PORT);  
          
        //注册事件和事件完成后的处理器,这个CompletionHandler就是事件完成后的处理器  
        server.accept(null,new CompletionHandler<AsynchronousSocketChannel,Object>(){  
  
            final ByteBuffer buffer = ByteBuffer.allocate(1024);  
              
            @Override  
            public void completed(AsynchronousSocketChannel result,Object attachment) {  
                  
                System.out.println(Thread.currentThread().getName());  
                Future<Integer> writeResult = null;  
                  
                try{  
                    buffer.clear();  
                    result.read(buffer).get(100,TimeUnit.SECONDS);  
                      
                    System.out.println("In server: "+ new String(buffer.array()));  
                      
                    //将数据写回客户端  
                    buffer.flip();  
                    writeResult = result.write(buffer);  
                }catch(InterruptedException | ExecutionException | TimeoutException e){  
                    e.printStackTrace();  
                }finally{  
                    server.accept(null,this);  
                    try {  
                        writeResult.get();  
                        result.close();  
                    } catch (InterruptedException | ExecutionException e) {  
                        e.printStackTrace();  
                    } catch (IOException e) {  
                        e.printStackTrace();  
                    }  
                }  
                  
            }  
  
            @Override  
            public void failed(Throwable exc, Object attachment) {  
                System.out.println("failed:"+exc);  
            }  
              
        });  
    }  
      
    public static void main(String[] args) {  
        new AIOEchoServer().start();  
        while(true){  
            try {  
                Thread.sleep(1000);  
            } catch (InterruptedException e) {  
                e.printStackTrace();  
            }  
        }  
    }  
  
}  
import java.io.IOException;  
import java.net.InetSocketAddress;  
import java.nio.ByteBuffer;  
import java.nio.channels.AsynchronousSocketChannel;  
import java.nio.channels.CompletionHandler;  
  
public class AIOClient {  
  
    public static void main(String[] args) throws IOException {  
          
        final AsynchronousSocketChannel client = AsynchronousSocketChannel.open();  
          
        InetSocketAddress serverAddress = new InetSocketAddress("127.0.0.1",8001);  
          
        CompletionHandler<Void, ? super Object> handler = new CompletionHandler<Void,Object>(){  
  
            @Override  
            public void completed(Void result, Object attachment) {  
                client.write(ByteBuffer.wrap("Hello".getBytes()),null,   
                        new CompletionHandler<Integer,Object>(){  
  
                            @Override  
                            public void completed(Integer result,  
                                    Object attachment) {  
                                final ByteBuffer buffer = ByteBuffer.allocate(1024);  
                                client.read(buffer,buffer,new CompletionHandler<Integer,ByteBuffer>(){  
  
                                    @Override  
                                    public void completed(Integer result,  
                                            ByteBuffer attachment) {  
                                        buffer.flip();  
                                        System.out.println(new String(buffer.array()));  
                                        try {  
                                            client.close();  
                                        } catch (IOException e) {  
                                            e.printStackTrace();  
                                        }  
                                    }  
  
                                    @Override  
                                    public void failed(Throwable exc,  
                                            ByteBuffer attachment) {  
                                    }  
                                      
                                });  
                            }  
  
                            @Override  
                            public void failed(Throwable exc, Object attachment) {  
                            }  
                      
                });  
            }  
  
            @Override  
            public void failed(Throwable exc, Object attachment) {  
            }  
              
        };  
          
        client.connect(serverAddress, null, handler);  
        try {  
            Thread.sleep(1000);  
        } catch (InterruptedException e) {  
            e.printStackTrace();  
        }  
    }  
  
}  

上面是一个简单的aio例子,上面的代码我们可以看出,相较于普通的io,aio多了一个回调事件,这个也是aio实现异步的关键,这个回调事件里面正是处理数据的方法。因此,aio可以不用等数据到达再执行处理时间,而是变成数据到达后调用回调事件,自己处理自己。

nio

nio使用的应该是io多路复用模型,其中比较重要的组件有三个,Selectors,Channels,Buffers。而nio的工作机制主要就是,selector不断轮询,查询多个通道,检测通道数据是否到达,如果到达。则将该通道标志为就绪状态,然后可以将通道数据读取到buffer里面,然后再进行后续操作。接下来,我们将分别介绍这三个组件

Channel

Channel实现

这些是Java NIO中最重要的通道的实现:

FileChannel
DatagramChannel
SocketChannel
ServerSocketChannel
FileChannel 从文件中读写数据。

DatagramChannel 能通过UDP读写网络中的数据。

SocketChannel 能通过TCP读写网络中的数据。

ServerSocketChannel可以监听新进来的TCP连接,像Web服务器那样。对每一个新进来的连接都会创建一个SocketChannel。

基本的 Channel代码 示例

下面是一个使用FileChannel读取数据到Buffer中的示例:

[code lang=”java”]
RandomAccessFile aFile = new RandomAccessFile("data/nio-data.txt", "rw");
FileChannel inChannel = aFile.getChannel();

ByteBuffer buf = ByteBuffer.allocate(48);

int bytesRead = inChannel.read(buf);
while (bytesRead != -1) {

System.out.println("Read " + bytesRead);
buf.flip();

while(buf.hasRemaining()){
System.out.print((char) buf.get());
}

buf.clear();
bytesRead = inChannel.read(buf);
}
aFile.close();
[/code]

Buffer

Buffer的基本用法

使用Buffer读写数据一般遵循以下四个步骤:

写入数据到Buffer
调用flip()方法
从Buffer中读取数据
调用clear()方法或者compact()方法
当向buffer写入数据时,buffer会记录下写了多少数据。一旦要读取数据,需要通过flip()方法将Buffer从写模式切换到读模式。在读模式下,可以读取之前写入到buffer的所有数据。

一旦读完了所有的数据,就需要清空缓冲区,让它可以再次被写入。有两种方式能清空缓冲区:调用clear()或compact()方法。clear()方法会清空整个缓冲区。compact()方法只会清除已经读过的数据。任何未读的数据都被移到缓冲区的起始处,新写入的数据将放到缓冲区未读数据的后面。

下面是一个使用Buffer的例子:

[code lang=”java”]
RandomAccessFile aFile = new RandomAccessFile("data/nio-data.txt", "rw");
FileChannel inChannel = aFile.getChannel();

//create buffer with capacity of 48 bytes
ByteBuffer buf = ByteBuffer.allocate(48);

int bytesRead = inChannel.read(buf); //read into buffer.
while (bytesRead != -1) {

buf.flip(); //make buffer ready for read

while(buf.hasRemaining()){
System.out.print((char) buf.get()); // read 1 byte at a time
}

buf.clear(); //make buffer ready for writing
bytesRead = inChannel.read(buf);
}
aFile.close();
[/code]

Buffer的capacity,position和limit

缓冲区本质上是一块可以写入数据,然后可以从中读取数据的内存。这块内存被包装成NIO Buffer对象,并提供了一组方法,用来方便的访问该块内存。

为了理解Buffer的工作原理,需要熟悉它的三个属性:

capacity
position
limit
position和limit的含义取决于Buffer处在读模式还是写模式。不管Buffer处在什么模式,capacity的含义总是一样的。

这里有一个关于capacity,position和limit在读写模式中的说明,详细的解释在插图后面。
在这里插入图片描述

capacity

作为一个内存块,Buffer有一个固定的大小值,也叫“capacity”.你只能往里写capacity个byte、long,char等类型。一旦Buffer满了,需要将其清空(通过读数据或者清除数据)才能继续写数据往里写数据。

position

当你写数据到Buffer中时,position表示当前的位置。初始的position值为0.当一个byte、long等数据写到Buffer后, position会向前移动到下一个可插入数据的Buffer单元。position最大可为capacity – 1.

当读取数据时,也是从某个特定位置读。当将Buffer从写模式切换到读模式,position会被重置为0. 当从Buffer的position处读取数据时,position向前移动到下一个可读的位置。

limit

在写模式下,Buffer的limit表示你最多能往Buffer里写多少数据。 写模式下,limit等于Buffer的capacity。

当切换Buffer到读模式时, limit表示你最多能读到多少数据。因此,当切换Buffer到读模式时,limit会被设置成写模式下的position值。换句话说,你能读到之前写入的所有数据(limit被设置成已写数据的数量,这个值在写模式下就是position)

Buffer的类型

Java NIO 有以下Buffer类型

ByteBuffer
MappedByteBuffer
CharBuffer
DoubleBuffer
FloatBuffer
IntBuffer
LongBuffer
ShortBuffer
p<>
如你所见,这些Buffer类型代表了不同的数据类型。换句话说,就是可以通过char,short,int,long,float 或 double类型来操作缓冲区中的字节。

MappedByteBuffer 有些特别,在涉及它的专门章节中再讲。

Buffer的分配

要想获得一个Buffer对象首先要进行分配。 每一个Buffer类都有一个allocate方法。下面是一个分配48字节capacity的ByteBuffer的例子。

[code lang=”java”]
ByteBuffer buf = ByteBuffer.allocate(48);
[/code]

这是分配一个可存储1024个字符的CharBuffer:

[code lang=”java”]
CharBuffer buf = CharBuffer.allocate(1024);
[/code]

向Buffer中写数据

写数据到Buffer有两种方式:

从Channel写到Buffer。
通过Buffer的put()方法写到Buffer里。
从Channel写到Buffer的例子

[code lang=”java”]
int bytesRead = inChannel.read(buf); //read into buffer.
[/code]

通过put方法写Buffer的例子:

[code lang=”java”]
buf.put(127);
[/code]

put方法有很多版本,允许你以不同的方式把数据写入到Buffer中。例如, 写到一个指定的位置,或者把一个字节数组写入到Buffer。 更多Buffer实现的细节参考JavaDoc。

flip()方法
flip方法将Buffer从写模式切换到读模式。调用flip()方法会将position设回0,并将limit设置成之前position的值。

换句话说,position现在用于标记读的位置,limit表示之前写进了多少个byte、char等 —— 现在能读取多少个byte、char等。

从Buffer中读取数据

从Buffer中读取数据有两种方式:

1.从Buffer读取数据到Channel。
2.使用get()方法从Buffer中读取数据。
从Buffer读取数据到Channel的例子:

[code lang=”java”]
//read from buffer into channel.
int bytesWritten = inChannel.write(buf);
[/code]

使用get()方法从Buffer中读取数据的例子

[code lang=”java”]
byte aByte = buf.get();
[/code]

get方法有很多版本,允许你以不同的方式从Buffer中读取数据。例如,从指定position读取,或者从Buffer中读取数据到字节数组。更多Buffer实现的细节参考JavaDoc。

Selector

为什么使用Selector?

仅用单个线程来处理多个Channels的好处是,只需要更少的线程来处理通道。事实上,可以只用一个线程处理所有的通道。对于操作系统来说,线程之间上下文切换的开销很大,而且每个线程都要占用系统的一些资源(如内存)。因此,使用的线程越少越好。

但是,需要记住,现代的操作系统和CPU在多任务方面表现的越来越好,所以多线程的开销随着时间的推移,变得越来越小了。实际上,如果一个CPU有多个内核,不使用多任务可能是在浪费CPU能力。不管怎么说,关于那种设计的讨论应该放在另一篇不同的文章中。在这里,只要知道使用Selector能够处理多个通道就足够了。

Selector的创建

通过调用Selector.open()方法创建一个Selector,如下:

[code lang=”java”]
Selector selector = Selector.open();
[/code]

向Selector注册通道

为了将Channel和Selector配合使用,必须将channel注册到selector上。通过SelectableChannel.register()方法来实现,如下:

[code lang=”java”]
channel.configureBlocking(false);
SelectionKey key = channel.register(selector,
Selectionkey.OP_READ);
[/code]

与Selector一起使用时,Channel必须处于非阻塞模式下。这意味着不能将FileChannel与Selector一起使用,因为FileChannel不能切换到非阻塞模式。而套接字通道都可以。

注意register()方法的第二个参数。这是一个“interest集合”,意思是在通过Selector监听Channel时对什么事件感兴趣。可以监听四种不同类型的事件:

1.Connect
2.Accept
3.Read
4.Write
通道触发了一个事件意思是该事件已经就绪。所以,某个channel成功连接到另一个服务器称为“连接就绪”。一个server socket channel准备好接收新进入的连接称为“接收就绪”。一个有数据可读的通道可以说是“读就绪”。等待写数据的通道可以说是“写就绪”。

这四种事件用SelectionKey的四个常量来表示:

1.SelectionKey.OP_CONNECT
2.SelectionKey.OP_ACCEPT
3.SelectionKey.OP_READ
4.SelectionKey.OP_WRITE
如果你对不止一种事件感兴趣,那么可以用“位或”操作符将常量连接起来,如下:

[code lang=”java”]
int interestSet = SelectionKey.OP_READ | SelectionKey.OP_WRITE;
[/code]

在下面还会继续提到interest集合。

SelectionKey

在上一小节中,当向Selector注册Channel时,register()方法会返回一个SelectionKey对象。这个对象包含了一些你感兴趣的属性:

interest集合
ready集合
Channel
Selector
附加的对象(可选)
下面我会描述这些属性。

interest集合
就像向Selector注册通道一节中所描述的,interest集合是你所选择的感兴趣的事件集合。可以通过SelectionKey读写interest集合,像这样:

[code lang=”java”]
int interestSet = selectionKey.interestOps();

boolean isInterestedInAccept = (interestSet & SelectionKey.OP_ACCEPT) == SelectionKey.OP_ACCEPT;
boolean isInterestedInConnect = interestSet & SelectionKey.OP_CONNECT;
boolean isInterestedInRead = interestSet & SelectionKey.OP_READ;
boolean isInterestedInWrite = interestSet & SelectionKey.OP_WRITE;
[/code]

可以看到,用“位与”操作interest 集合和给定的SelectionKey常量,可以确定某个确定的事件是否在interest 集合中。

ready集合
ready 集合是通道已经准备就绪的操作的集合。在一次选择(Selection)之后,你会首先访问这个ready set。Selection将在下一小节进行解释。可以这样访问ready集合:

[code lang=”java”]
int readySet = selectionKey.readyOps();
[/code]

可以用像检测interest集合那样的方法,来检测channel中什么事件或操作已经就绪。但是,也可以使用以下四个方法,它们都会返回一个布尔类型:

[code lang=”java”]
selectionKey.isAcceptable();
selectionKey.isConnectable();
selectionKey.isReadable();
selectionKey.isWritable();
[/code]

Channel + Selector
从SelectionKey访问Channel和Selector很简单。如下:

[code lang=”java”]
Channel channel = selectionKey.channel();
Selector selector = selectionKey.selector();
[/code]

附加的对象
可以将一个对象或者更多信息附着到SelectionKey上,这样就能方便的识别某个给定的通道。例如,可以附加 与通道一起使用的Buffer,或是包含聚集数据的某个对象。使用方法如下:

[code lang=”java”]
selectionKey.attach(theObject);
Object attachedObj = selectionKey.attachment();
[/code]

还可以在用register()方法向Selector注册Channel的时候附加对象。如:

[code lang=”java”]
SelectionKey key = channel.register(selector, SelectionKey.OP_READ, theObject);
[/code]

通过Selector选择通道

一旦向Selector注册了一或多个通道,就可以调用几个重载的select()方法。这些方法返回你所感兴趣的事件(如连接、接受、读或写)已经准备就绪的那些通道。换句话说,如果你对“读就绪”的通道感兴趣,select()方法会返回读事件已经就绪的那些通道。

下面是select()方法:

int select()
int select(long timeout)
int selectNow()
select()阻塞到至少有一个通道在你注册的事件上就绪了。

select(long timeout)和select()一样,除了最长会阻塞timeout毫秒(参数)。

selectNow()不会阻塞,不管什么通道就绪都立刻返回(译者注:此方法执行非阻塞的选择操作。如果自从前一次选择操作后,没有通道变成可选择的,则此方法直接返回零。)。

select()方法返回的int值表示有多少通道已经就绪。亦即,自上次调用select()方法后有多少通道变成就绪状态。如果调用select()方法,因为有一个通道变成就绪状态,返回了1,若再次调用select()方法,如果另一个通道就绪了,它会再次返回1。如果对第一个就绪的channel没有做任何操作,现在就有两个就绪的通道,但在每次select()方法调用之间,只有一个通道就绪了。

selectedKeys()
一旦调用了select()方法,并且返回值表明有一个或更多个通道就绪了,然后可以通过调用selector的selectedKeys()方法,访问“已选择键集(selected key set)”中的就绪通道。如下所示:

[code lang=”java”]
Set selectedKeys = selector.selectedKeys();
[/code]

当像Selector注册Channel时,Channel.register()方法会返回一个SelectionKey 对象。这个对象代表了注册到该Selector的通道。可以通过SelectionKey的selectedKeySet()方法访问这些对象。

可以遍历这个已选择的键集合来访问就绪的通道。如下:

[code lang=”java”]
Set selectedKeys = selector.selectedKeys();
Iterator keyIterator = selectedKeys.iterator();
while(keyIterator.hasNext()) {
SelectionKey key = keyIterator.next();
if(key.isAcceptable()) {
// a connection was accepted by a ServerSocketChannel.
} else if (key.isConnectable()) {
// a connection was established with a remote server.
} else if (key.isReadable()) {
// a channel is ready for reading
} else if (key.isWritable()) {
// a channel is ready for writing
}
keyIterator.remove();
}
[/code]

这个循环遍历已选择键集中的每个键,并检测各个键所对应的通道的就绪事件。

注意每次迭代末尾的keyIterator.remove()调用。Selector不会自己从已选择键集中移除SelectionKey实例。必须在处理完通道时自己移除。下次该通道变成就绪时,Selector会再次将其放入已选择键集中。

SelectionKey.channel()方法返回的通道需要转型成你要处理的类型,如ServerSocketChannel或SocketChannel等。

总结

我们首先介绍了io的五种模型,然后在此基础上又介绍了io,nio,aio的区别和其所使用的模型。但是这个有一点,我们介绍的是nio1.0的版本,2.0版本可能不太一样,有需要的可以自行前往官网了解学习。最后希望通过本篇文章,大家可以对不同的io有一个清晰的认知。


http://www.kler.cn/a/18161.html

相关文章:

  • 2024 第五次周赛
  • 【LeetCode】【算法】416. 分割等和子集
  • 青藤深度参编的终端安全国家标准正式发布
  • 计算机网络:网络层 —— 软件定义网络 SDN
  • 如何在 Spring Boot 中实现多数据源的事务管理?
  • stm32mp2 RMII phy调试总结
  • 测试开发如何进阶?需要哪些能力?吐血整理-你的进阶之路...
  • 深入理解移动端布局:Viewport与设备像素比
  • linux命令之kill详解
  • UICollectionView 实现整页翻动(每页3个cell)
  • Android 9.0 Camera2 拍照功能默认选前摄像头
  • 【论文阅读】A Comparative Study on Camera-Radar Calibration Methods
  • 如何提高执行力
  • 图数据库游记
  • 代码随想录算法训练营day28 | 93.复原IP地址,78.子集,90.子集II
  • 回文数:探索数字世界中的对称美学
  • spark练习例子——单词计数——pyspark
  • Java基础--->基础部分(2)【Java值传递】
  • 项目搭建—常用的插件
  • 基于R语言APSIM模型
  • 国民技术N32G430开发笔记(19)- IAP 升级 I2C1 从机收发数据
  • 本地字体库的引入方法
  • 程序设计的三种结构-C中实现其的6条语句
  • 数据导向下制造业的生产效率、交易效率提升办法
  • 【ESD专题】案例:TVS管钳位电压能不能通过TLP测试数据表征?
  • 【CMIP6月、日数据】【ERA5-LAND陆面再分析数据】【全球VIPPHEN物候数据】