挖掘业务场景的存储更优解
文章目录
- 第1章 如何用更优的数据存储方案,打造更稳定的架构?
- 1.1 选用适合自己的数据存储方案
- 1.1.1 关系型数据库
- 1.1.2 非关系型数据库
- 1.1.3 内存数据库
- 1.2 打造更稳定的架构
- 1.2.1 分布式架构
- 1.2.2 容灾备份
- 1.2.3 监控报警
- 1.2.4 自动化运维
- 1.3 案例分析
- 第2章 社交新零售业务场景的演进与架构方案设计
- 2.1 社交新零售业务场景的演进过程
- 2.1.1 社交电商
- 2.1.2 社交化电商
- 2.1.3 社交内容电商
- 2.2 架构方案设计
- 2.2.1 服务拆分
- 2.2.2 数据存储
- 2.2.3 缓存优化
- 2.2.4 监控报警
- 2.3 案例分析
📕我是廖志伟,一名Java开发工程师、Java领域优质创作者、CSDN博客专家、51CTO专家博主、阿里云专家博主、清华大学出版社签约作者、产品软文创造者、技术文章评审老师、问卷调查设计师、个人社区创始人、开源项目贡献者。🌎跑过十五公里、徒步爬过衡山、🔥有过三个月减肥20斤的经历、是个喜欢躺平的狠人。
📘拥有多年一线研发和团队管理经验,研究过主流框架的底层源码(Spring、SpringBoot、Spring MVC、SpringCould、Mybatis、Dubbo、Zookeeper),消息中间件底层架构原理(RabbitMQ、RockerMQ、Kafka)、Redis缓存、MySQL关系型数据库、 ElasticSearch全文搜索、MongoDB非关系型数据库、Apache ShardingSphere分库分表读写分离、设计模式、领域驱动DDD、Kubernetes容器编排等。🎥有从0到1的高并发项目经验,利用弹性伸缩、负载均衡、报警任务、自启动脚本,最高压测过200台机器,有着丰富的项目调优经验。
希望各位读者大大多多支持用心写文章的博主,现在时代变了,信息爆炸,酒香也怕巷子深,博主真的需要大家的帮助才能在这片海洋中继续发光发热,所以,赶紧动动你的小手,点波关注❤️,点波赞👍,点波收藏⭐,甚至点波评论✍️,都是对博主最好的支持和鼓励!
- 💂 博客主页: 我是廖志伟
- 👉开源项目:java_wxid
- 🌥 哔哩哔哩:我是廖志伟
- 🎏个人社区:幕后大佬
- 🔖个人微信号:
SeniorRD
📥博主的人生感悟和目标
- 🍋程序开发这条路不能停,停下来容易被淘汰掉,吃不了自律的苦,就要受平庸的罪,持续的能力才能带来持续的自信。我本是一个很普通的程序员,放在人堆里,除了与生俱来的盛世美颜,就剩180的大高个了,就是我这样的一个人,默默写博文也有好多年了。
- 📺有句老话说的好,牛逼之前都是傻逼式的坚持,希望自己可以通过大量的作品、时间的积累、个人魅力、运气、时机,可以打造属于自己的技术影响力。
- 💥内心起伏不定,我时而激动,时而沉思。我希望自己能成为一个综合性人才,具备技术、业务和管理方面的精湛技能。我想成为产品架构路线的总设计师,团队的指挥者,技术团队的中流砥柱,企业战略和资本规划的实战专家。
- 🎉这个目标的实现需要不懈的努力和持续的成长,但我必须努力追求。因为我知道,只有成为这样的人才,我才能在职业生涯中不断前进并为企业的发展带来真正的价值。在这个不断变化的时代,我们必须随时准备好迎接挑战,不断学习和探索新的领域,才能不断地向前推进。我坚信,只要我不断努力,我一定会达到自己的目标。
📙经过多年在CSDN创作上千篇文章的经验积累,我已经拥有了不错的写作技巧。同时,我还与清华大学出版社签下了四本书籍的合约,并将陆续在明年出版。这些书籍包括了基础篇、进阶篇、架构篇的📌《Java项目实战—深入理解大型互联网企业通用技术》📌,以及📚《解密程序员的思维密码–沟通、演讲、思考的实践》📚。具体出版计划会根据实际情况进行调整,希望各位读者朋友能够多多支持!
🌾阅读前,快速浏览目录和章节概览可帮助了解文章结构、内容和作者的重点。了解自己希望从中获得什么样的知识或经验是非常重要的。建议在阅读时做笔记、思考问题、自我提问,以加深理解和吸收知识。阅读结束后,反思和总结所学内容,并尝试应用到现实中,有助于深化理解和应用知识。与朋友或同事分享所读内容,讨论细节并获得反馈,也有助于加深对知识的理解和吸收。
💡在这个美好的时刻,本人不再啰嗦废话,现在毫不拖延地进入文章所要讨论的主题。接下来,我将为大家呈现正文内容。
第1章 如何用更优的数据存储方案,打造更稳定的架构?
随着互联网技术的发展,数据处理已经成为了企业发展的关键因素之一。如何用更优的数据存储方案,打造更稳定的架构,是每个企业需要思考的问题。本章节将介绍如何选用适合自己的数据存储方案和如何打造更稳定的架构。
1.1 选用适合自己的数据存储方案
在选择数据存储方案时,需要考虑数据量、访问频率、数据结构、查询需求等因素。下面介绍几种常用的数据存储方案。
1.1.1 关系型数据库
关系型数据库是最常用的数据存储方案之一,如MySQL、Oracle等。它们具有数据结构清晰、支持事务、查询速度快等优点,适用于数据之间存在复杂关系的应用场景。但是,在大数据量和高并发情况下,关系型数据库的性能会有所下降。
1.1.2 非关系型数据库
非关系型数据库又叫NoSQL数据库,它们存储数据的方式与关系型数据库不同,如MongoDB、Redis、Cassandra等。非关系型数据库扩展性好、读写速度快,适用于数据量大、高并发、不需要关系的应用场景。但是,非关系型数据库不支持事务和复杂查询,数据存储结构也相对较为简单。
1.1.3 内存数据库
内存数据库将数据存储在内存中,读写速度非常快,适合处理实时数据。Redis是一种常见的内存数据库,它支持多种数据类型,如字符串、列表、哈希表等。
1.2 打造更稳定的架构
打造稳定的架构是保障业务连续性的重要手段。下面介绍几个方面。
1.2.1 分布式架构
分布式架构将一个系统拆分成多个独立的模块,每个模块可以独立部署和扩展。分布式架构可以提高系统的可靠性和可扩展性,但是,也带来了系统调试和运维的挑战。
1.2.2 容灾备份
容灾备份是保障系统连续性的关键手段之一。在容灾备份方面,可以使用主从复制、集群等技术,确保系统在数据中心故障或其他灾害发生时,能够快速恢复。
1.2.3 监控报警
监控报警是及时发现系统故障的关键手段。可以使用监控系统对系统状态进行实时监控,并在出现异常时及时发出警报,及时解决问题。
1.2.4 自动化运维
自动化运维可以减少人为错误,提高运维效率。可以使用自动化运维工具自动化部署、升级、扩容、缩容等操作。
1.3 案例分析
京东是中国最大的电商平台之一,其业务规模非常庞大。为了保障业务的连续性,京东采用了分布式架构、容灾备份、监控报警、自动化运维等手段。在数据存储方面,京东使用MySQL、Redis、Hadoop等技术,根据不同的业务需求选用不同的数据存储方案。
第2章 社交新零售业务场景的演进与架构方案设计
随着移动互联网的发展,社交新零售成为了近年来热门的业务模式之一。社交新零售将社交和电商相结合,通过社交渠道将商品推广给用户,提高用户转化率。本章节将介绍社交新零售业务场景的演进过程,以及相应的架构方案设计。
2.1 社交新零售业务场景的演进过程
2.1.1 社交电商
社交电商是最早的社交新零售业务模式。其核心是通过社交平台为商家提供销售渠道,增加销售额。如淘宝、拼多多等。
2.1.2 社交化电商
社交化电商是在社交电商模式上进行改进,增加了社交化的元素。在社交化电商中,用户可以通过社交平台分享商品,帮助商家推广商品。如微信购物等。
2.1.3 社交内容电商
社交内容电商是在社交化电商基础上增加了内容营销的元素。在社交内容电商中,商家可以通过内容营销来推广商品。如小红书等。
2.2 架构方案设计
在设计社交新零售架构方案时,需要考虑社交化的特性、高并发、大数据量等因素。下面介绍几个方面。
2.2.1 服务拆分
社交新零售架构需要支持高并发、低延迟的访问。为了解决这个问题,可以将服务拆分成多个独立的模块,每个模块可以独立部署和扩展。如可以将商品服务、用户服务、订单服务等进行拆分。
2.2.2 数据存储
社交新零售架构需要处理大数据量和高并发的访问,需要选用适合自己的数据存储方案。可以使用MongoDB、Hadoop等技术来存储数据。
2.2.3 缓存优化
社交新零售架构需要支持高并发的访问,缓存优化可以提高系统的访问速度。可以使用Redis等技术来进行缓存优化。
2.2.4 监控报警
社交新零售架构需要支持高并发、低延迟的访问。为了保障系统的稳定性,需要设置监控报警系统,及时发现和解决问题。
2.3 案例分析
小红书是一家社交新零售企业,其业务规模较大。为了支持高并发、低延迟的访问,小红书采用了服务拆分、数据存储、缓存优化和监控报警等技术。在数据存储方面,小红书使用了MongoDB和Hadoop等技术。
🔔如果您需要转载或者搬运这篇文章的话,非常欢迎您私信我哦~