当前位置: 首页 > article >正文

股票价格预测 | 融合CNN和Transformer以提升股票趋势预测准确度

一 本文摘要

股票价格往往很难预测,因为我们很难准确建模数据点之间的短期和长期时间关系。卷积神经网络(CNN)擅长找出用于建模短期关系的局部模式。然而,由于其有限的观察范围,CNN无法捕捉到长期关系。相比之下,Transformer可以学习全局上下文和长期关系。本文提出了一种结合CNN和Transformer的方法,来同时建模时间序列中的短期和长期关系,并预测未来股票价格是上涨、下跌还是保持不变。实验证明,这种方法在预测S&P 500成分股的盘中股价变动方面,相对于基准方法预测准确率提高了3%到14%不等。
二 背景知识

时间序列预测是一项具有挑战性的任务,尤其在金融行业中。它涉及对历史数据进行统计分析,以理解其中的复杂线性和非线性关系,并预测未来的趋势。在金融行业中,常见的预测应用包括预测市场上交易的公司股票的买入/卖出情况或价格的正/负变动。

传统的时间序列预测方法包括移动平均法、指数平滑法、自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)和季节性模型。移动平均法通过历史数据的平均值进行预测,而指数平滑法则考虑了近期数据的权重。ARMA模型结合了自回归和移动平均,而ARIMA模型在此基础上增加了对非平稳序列的差分处理。对于具有明显季节性变化的数据,可以使用季节性模型进行预测。然而,这些传统方法在处理复杂的非线性关系和长期依赖性方面有一定的限制。随着深度学习的发展,越来越多的研究关注于使用神经网络和深度学习模型进行时间序列预测。

深度学习模型中的循环神经网络(RNN)和长短期记忆(LSTM)网络被广泛应用于时间序列预测任务。RNN模型通过循环结构在网络内部传递信息,可以有效地处理序列数据的依赖关系。LSTM网络则通过门控机制,能够更好地处理长期依赖性


http://www.kler.cn/a/108603.html

相关文章:

  • ESLint 使用教程(五):ESLint 和 Prettier 的结合使用与冲突解决
  • CTF攻防世界小白刷题自学笔记13
  • java八股-jvm入门-程序计数器,堆,元空间,虚拟机栈,本地方法栈,类加载器,双亲委派,类加载执行过程
  • JWT深度解析:Java Web中的安全传输与身份验证
  • docker镜像源,亲测可用,时间2024-11-14
  • python: postgreSQL using psycopg2 or psycopg
  • [Machine Learning] 领域适应和迁移学习
  • 基于RK3568高性价比全国产EMS储能解决方案(一)概述
  • 高阶数据结构图下篇
  • c++和java中关于类的第几部分详解
  • Golang WebSocket 创建单独会话
  • 【MySQL】并发事务产生的问题及事务隔离级别
  • 0028Java程序设计-智能农场监控报警系统设计与实现
  • 私有云:【8】VCenter安装Connection服务
  • Linux-sdio接口
  • 全志T113-S3 裸机SMHC eMMC读写问题记录
  • python:使用Scikit-image对遥感影像进行傅里叶变换特征提取(fourier)
  • C#使用mysql-connector-net驱动连接mariadb报错
  • 【MATLAB源码-第62期】基于蜣螂优化算法(DBO)的无人机三维地图路径规划,输出最短路径和适应度曲线。
  • Docker 启动远程服务访问不了
  • SpringMVC学习
  • Android 13 - Media框架(12)- MediaCodec(二)
  • 漏洞复现-dedecms文件上传(CVE-2019-8933)
  • AcWing第 127 场周赛 - AcWing 5283. 牛棚入住+AcWing 5284. 构造矩阵 - 模拟+快速幂+数学
  • SAP从入门到放弃系列之QM动态修改(Dynamic Modification)
  • 挖掘业务场景的存储更优解