当前位置: 首页 > article >正文

【pandas技巧】group by+agg+transform函数

目录

1. group by+单个字段+单个聚合

2. group by+单个字段+多个聚合

3. group by+多个字段+单个聚合

4. group by+多个字段+多个聚合

5. transform函数


studentsgradesexscoremoney
0小狗小学部female95844
1小猫小学部male93836
2小鸭初中部male83854
3小兔小学部female90931
4小花小学部male81853
5小草小学部male80991
6小狗初中部female81854
7小猫小学部male93886
8小鸭小学部male88983
9小兔小学部male86891
10小花初中部male92830
11小草初中部male84948

1. group by+单个字段+单个聚合

1.1 方法一

# 求每个人的总金额:
total_money=df.groupby("students")["money"].sum().reset_index()
total_money

1.2 方法二(使用agg)

df.groupby("students").agg({"money":"sum"}).reset_index()
#或者
df.groupby("students").agg({"money":np.sum}).reset_index()
studentsmoney
0小兔1820
1小狗1711
2小猫1670
3小花1861
4小草1825
5小鸭1719

2. group by+单个字段+多个聚合

2.1 方法一(使用group by+merge)

mean_money = df.groupby("students")["money"].mean().reset_index()
mean_money.columns = ["students","mean_money"]
mean_money
total_mean = total_money.merge(mean_money)
total_mean

total_mean = total_money.merge(mean_money)
total_mean
studentstotal_moneymean_money
0小兔1820910.0
1小狗1711855.5
2小猫1670835.0
3小花1861930.5
4小草1825912.5
5小鸭1719859.5

2.2 方法二(使用group by+agg)

total_mean = df.groupby("students").agg(total_money=("money", "sum"),mean_money=("money", "mean")).reset_index()
total_mean
studentstotal_moneymean_money
0小兔1820910.0
1小狗1711855.5
2小猫1670835.0
3小花1861930.5
4小草1825912.5
5小鸭1719859.5

3. group by+多个字段+单个聚合

3.1 方法一

df.groupby(["students","grade"])["money"].sum().reset_index()
studentsgrademoney
0小兔初中部1820
1小狗初中部843
2小狗小学部868
3小猫小学部1670
4小花初中部910
5小花小学部951
6小草初中部1825
7小鸭初中部1719

3.2 方法二(使用agg)

df.groupby(["students","grade"]).agg({"money":"sum"}).reset_index()
studentsgrademoney
0小兔初中部1820
1小狗初中部843
2小狗小学部868
3小猫小学部1670
4小花初中部910
5小花小学部951
6小草初中部1825
7小鸭初中部1719

4. group by+多个字段+多个聚合

agg函数的使用的方法是:agg(新列名=("原列名", "统计函数"))

df.groupby(["students","grade"]).agg(total_money=("money", "sum"),mean_money=("money", "mean"),total_score=("score", "sum")).reset_index()
studentsgradetotal_moneymean_moneytotal_score
0小兔初中部1820910.0192
1小狗初中部843843.088
2小狗小学部868868.093
3小猫小学部1670835.0178
4小花初中部910910.095
5小花小学部951951.098
6小草初中部1825912.5184
7小鸭初中部1719859.5173

5. transform函数

 5.1 方法一(使用groupby + merge)

df_1 = df.groupby("grade")["score"].mean().reset_index()
df_1.columns = ["grade", "average_score"]
df_1
gradeaverage_score
0初中部85.00
1小学部88.25
df_new1 = pd.merge(df, df_1, on="grade")
df_new1
studentsgradesexscoremoneyaverage_score
0小狗小学部female9584488.25
1小猫小学部male9383688.25
2小兔小学部female9093188.25
3小花小学部male8185388.25
4小草小学部male8099188.25
5小猫小学部male9388688.25
6小鸭小学部male8898388.25
7小兔小学部male8689188.25
8小鸭初中部male8385485.00
9小狗初中部female8185485.00
10小花初中部male9283085.00
11小草初中部male8494885.00

5.2 方法二(使用groupby + map)

dic = df.groupby("grade")["score"].mean().to_dict()
dic
{'初中部': 85.0, '小学部': 88.25}
df_new1["average_map_score"] = df["grade"].map(dic)
df_new1
studentsgradesexscoremoneyaverage_scoreaverage_map_score
0小狗小学部female9584488.2588.25
1小猫小学部male9383688.2588.25
2小兔小学部female9093188.2585.00
3小花小学部male8185388.2588.25
4小草小学部male8099188.2588.25
5小猫小学部male9388688.2588.25
6小鸭小学部male8898388.2585.00
7小兔小学部male8689188.2588.25
8小鸭初中部male8385485.0088.25
9小狗初中部female8185485.0088.25
10小花初中部male9283085.0085.00
11小草初中部male8494885.0085.00

5.3 方法三(使用transform一步到位)

df_new1["average_trans_score"] = df.groupby("grade")["score"].transform("mean")
df_new1
studentsgradesexscoremoneyaverage_scoreaverage_map_scoreaverage_trans_score
0小狗小学部female9584488.2588.2588.25
1小猫小学部male9383688.2588.2588.25
2小兔小学部female9093188.2585.0085.00
3小花小学部male8185388.2588.2588.25
4小草小学部male8099188.2588.2588.25
5小猫小学部male9388688.2588.2588.25
6小鸭小学部male8898388.2585.0085.00
7小兔小学部male8689188.2588.2588.25
8小鸭初中部male8385485.0088.2588.25
9小狗初中部female8185485.0088.2588.25
10小花初中部male9283085.0085.0085.00
11小草初中部male8494885.0085.0085.00


http://www.kler.cn/a/108830.html

相关文章:

  • 图像处理实验二(Image Understanding and Basic Processing)
  • 轻松上手:使用Docker部署Java服务
  • SAP_MM_SD_PP_FICO_视频课程几乎免费送
  • 同三维T610UDP-4K60 4K60 DP或HDMI或手机信号采集卡
  • ODOO学习笔记(8):模块化架构的优势
  • 11Java面向对象高级(篇2,Java程序的核心套路!!!!)
  • Mysql第四篇---数据库索引优化与查询优化
  • IconWorkshop中文官方版下载_IconWorkshop最新版下载v6.91汉化破解版下载
  • Docker安装部署Elasticsearch+Kibana+IK分词器
  • 网络搭建和运维的基础题目
  • C++设计模式_16_Adapter 适配器
  • Java游戏修炼手册:2023 最新学习线路图
  • EtherNet/IP转profienrt协议网关连接EtherNet/IP协议的川崎机器人配置方法
  • 【LeetCode】3. 无重复字符的最长子串
  • 二叉树的概念
  • 竹云产品入选《2023年度上海市网络安全产业创新攻关成果目录》
  • 【操作系统】进程的控制和通信
  • Pytorch整体工作流程代码详解(新手入门)
  • selenium工作原理和反爬分析
  • JavaWeb 怎么在servlet向页面输出Html元素?
  • Leetcode.274 H 指数
  • Starknet开发工具
  • 解决找不到vcruntime140.dll,无法继续执行代码方法
  • SOLIDWORKS PDM 2024数据管理5大新功能
  • 简单方法搭建个人网站
  • DeOldify 接口化改造 集成 Flask