当前位置: 首页 > article >正文

TensorRt推理加速框架Python API服务器部署教程以及运行Helloworld程序

一、确认cuda工具包和n卡相关驱动是否安装

在终端中输入以下命令:

nvcc -V

如果出现以下提示,则已经成功安装
image.png
在终端中输入以下命令:

nvidia-smi

如果出现即为成功,我在这里就不去介绍怎么下载cuda和驱动怎么下载了,大家可以看一下网上的其他安装教程
在这里插入图片描述

二、pip安装tensorRT API

此步骤在python的虚拟环境下进行:

python3 -m pip install --upgrade tensorrt

三、验证tensort库安装结果

>>> import tensorrt
>>> print(tensorrt.__version__)
8.6.1
>>> assert tensorrt.Builder(tensorrt.Logger())
[11/04/2023-11:19:33] [TRT] [W] CUDA lazy loading is not enabled. 
Enabling it can significantly reduce device memory usage and speed up 
TensorRT initialization. 
See "Lazy Loading" section of CUDA documentation https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading

四、安装Cuda-python

这里如果遇到网络问题可以加上清华源-i [https://pypi.tuna.tsinghua.edu.cn/simple](https://pypi.tuna.tsinghua.edu.cn/simple)

pip install cuda-python

五、验证cuda-python是否安装成功

进入python,如果能成功导入库,则成功安装开库

python
import cuda

image.png

六、克隆TensorRT HelloWorld程序

项目地址:https://github.com/NVIDIA/TensorRT/tree/main/samples/python/network_api_pytorch_mnist
(1)克隆整个项目

git clone https://github.com/NVIDIA/TensorRT.git

这里如果网络不行,可以直接上github下载zip文件,一样的
(2)进入pytorch版本的例子目录,安装依赖

cd TensorRT/samples/python/network_api_pytorch_mnist
pip install -r requirements.txt

image.png
这里面包含了两个python源代码文件,其中model.py是一个卷积神经网络的代码,sample.py是调用这个网络对minist数据集进行训练预测的代码,并将训练好的模型转换文tensorRT的格式进行推理。
(3)运行sample.py文件

python sample.py

运行上述命令后,会产生以下输出:
训练过程:
image.png
最终结果:
image.png
**此时,你就已经成功运行了tensorRT的pytorch版本的HelloWorld程序!**下面我们对这个HelloWorld进行深入分析。

六、代码分析-Todo

这个样例采用了经典的mnist数据集,它是一些单通道的二维图像组成的数据集,可视化后如下:
mnist的样子.png
从下述代码,可以知道,作者构造了一个由两个卷积层和两个全连接层组成的简单神经网络,用来训练在mnist数据集上的预测模型,并且提供了get_weights方法,方便下载训练好的参数。

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import numpy as np
import os
from random import randint

# 这是一个简单的神经的网络,由两个卷积层和两个全连接层组成
# Network
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, kernel_size=5)
        self.conv2 = nn.Conv2d(20, 50, kernel_size=5)
        self.fc1 = nn.Linear(800, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.max_pool2d(self.conv1(x), kernel_size=2, stride=2)
        x = F.max_pool2d(self.conv2(x), kernel_size=2, stride=2)
        x = x.view(-1, 800)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

# 这个类主要实现用上述网络结构来训练的功能
class MnistModel(object):
    def __init__(self):
        # 一系列超参数
        self.batch_size = 64
        self.test_batch_size = 100
        self.learning_rate = 0.0025
        self.sgd_momentum = 0.9
        self.log_interval = 100
        # 加载mnist的训练数据和测试数据
        self.train_loader = torch.utils.data.DataLoader(
            datasets.MNIST(
                "/tmp/mnist/data",
                train=True,
                download=True,
                transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]),
            ),
            batch_size=self.batch_size,
            shuffle=True,
            num_workers=1,
            timeout=600,
        )
        self.test_loader = torch.utils.data.DataLoader(
            datasets.MNIST(
                "/tmp/mnist/data",
                train=False,
                transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]),
            ),
            batch_size=self.test_batch_size,
            shuffle=True,
            num_workers=1,
            timeout=600,
        )
        # 初始化网络对象
        self.network = Net()


    def learn(self, num_epochs=2):
        """这个函数用来训练网络,默认训练两轮"""
        # 每一个单轮训练
        def train(epoch):
            # 切换到训练模式
            self.network.train()
            # 使用随机梯度下降法来作为优化器
            optimizer = optim.SGD(self.network.parameters(), lr=self.learning_rate, momentum=self.sgd_momentum)
            #  每一个batch训练数据
            for batch, (data, target) in enumerate(self.train_loader):
                data, target = Variable(data), Variable(target)
                optimizer.zero_grad()
                output = self.network(data)
                loss = F.nll_loss(output, target)
                loss.backward()
                optimizer.step()
                # 输出损失信息
                if batch % self.log_interval == 0:
                    print(
                        "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
                            epoch,
                            batch * len(data),
                            len(self.train_loader.dataset),
                            100.0 * batch / len(self.train_loader),
                            loss.data.item(),
                        )
                    )

        # 测试函数
        def test(epoch):
            # 切换到验证模式
            self.network.eval()
            test_loss = 0
            correct = 0
            for data, target in self.test_loader:
                with torch.no_grad():
                    data, target = Variable(data), Variable(target)
                output = self.network(data)
                test_loss += F.nll_loss(output, target).data.item()
                pred = output.data.max(1)[1]
                correct += pred.eq(target.data).cpu().sum()
            test_loss /= len(self.test_loader)
            # 输出测试损失
            print(
                "\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
                    test_loss, correct, len(self.test_loader.dataset), 100.0 * correct / len(self.test_loader.dataset)
                )
            )
    	# 训练num_epochs轮
        for e in range(num_epochs):
            train(e + 1)
            test(e + 1)

    def get_weights(self):
        """返回network的权重参数"""
        return self.network.state_dict()

    def get_random_testcase(self):
        """从名字可以看出,这是一个从测试数据中随机抽取样本来进行推理"""
        data, target = next(iter(self.test_loader))
        case_num = randint(0, len(data) - 1)
        test_case = data.numpy()[case_num].ravel().astype(np.float32)
        test_name = target.numpy()[case_num]
        return test_case, test_name

从下述代码可知,作者使用了tensorRT对使用pytorch构建的神经网络进行了再构建,没有使用到parser自动解析网络框架。随着网络层数越深,这种方式会越来越麻烦。

import os
import sys
import model
import numpy as np
import tensorrt as trt
sys.path.insert(1, os.path.join(sys.path[0], ".."))
import common
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)


class ModelData(object):
    INPUT_NAME = "data"
    INPUT_SHAPE = (1, 1, 28, 28)
    OUTPUT_NAME = "prob"
    OUTPUT_SIZE = 10
    DTYPE = trt.float32


def populate_network(network, weights):
    # 从这个函数可以看出,这里对model.py中的网络架构又重新进行了创建,并没有使用parser来自动构建网络,如果网络层数更深,使用这种方法会非常麻烦
    # Configure the network layers based on the weights provided.
    input_tensor = network.add_input(name=ModelData.INPUT_NAME, dtype=ModelData.DTYPE, shape=ModelData.INPUT_SHAPE)

    def add_matmul_as_fc(net, input, outputs, w, b):
        assert len(input.shape) >= 3
        m = 1 if len(input.shape) == 3 else input.shape[0]
        k = int(np.prod(input.shape) / m)
        assert np.prod(input.shape) == m * k
        n = int(w.size / k)
        assert w.size == n * k
        assert b.size == n

        input_reshape = net.add_shuffle(input)
        input_reshape.reshape_dims = trt.Dims2(m, k)

        filter_const = net.add_constant(trt.Dims2(n, k), w)
        mm = net.add_matrix_multiply(
            input_reshape.get_output(0),
            trt.MatrixOperation.NONE,
            filter_const.get_output(0),
            trt.MatrixOperation.TRANSPOSE,
        )

        bias_const = net.add_constant(trt.Dims2(1, n), b)
        bias_add = net.add_elementwise(mm.get_output(0), bias_const.get_output(0), trt.ElementWiseOperation.SUM)

        output_reshape = net.add_shuffle(bias_add.get_output(0))
        output_reshape.reshape_dims = trt.Dims4(m, n, 1, 1)
        return output_reshape

    conv1_w = weights["conv1.weight"].numpy()
    conv1_b = weights["conv1.bias"].numpy()
    conv1 = network.add_convolution(
        input=input_tensor, num_output_maps=20, kernel_shape=(5, 5), kernel=conv1_w, bias=conv1_b
    )
    conv1.stride = (1, 1)

    pool1 = network.add_pooling(input=conv1.get_output(0), type=trt.PoolingType.MAX, window_size=(2, 2))
    pool1.stride = (2, 2)

    conv2_w = weights["conv2.weight"].numpy()
    conv2_b = weights["conv2.bias"].numpy()
    conv2 = network.add_convolution(pool1.get_output(0), 50, (5, 5), conv2_w, conv2_b)
    conv2.stride = (1, 1)

    pool2 = network.add_pooling(conv2.get_output(0), trt.PoolingType.MAX, (2, 2))
    pool2.stride = (2, 2)

    fc1_w = weights["fc1.weight"].numpy()
    fc1_b = weights["fc1.bias"].numpy()
    fc1 = add_matmul_as_fc(network, pool2.get_output(0), 500, fc1_w, fc1_b)

    relu1 = network.add_activation(input=fc1.get_output(0), type=trt.ActivationType.RELU)

    fc2_w = weights["fc2.weight"].numpy()
    fc2_b = weights["fc2.bias"].numpy()
    fc2 = add_matmul_as_fc(network, relu1.get_output(0), ModelData.OUTPUT_SIZE, fc2_w, fc2_b)

    fc2.get_output(0).name = ModelData.OUTPUT_NAME
    network.mark_output(tensor=fc2.get_output(0))


def build_engine(weights):
    # For more information on TRT basics, refer to the introductory samples.
    builder = trt.Builder(TRT_LOGGER)
    network = builder.create_network(common.EXPLICIT_BATCH)
    config = builder.create_builder_config()
    runtime = trt.Runtime(TRT_LOGGER)

    config.max_workspace_size = common.GiB(1)
    # Populate the network using weights from the PyTorch model.
    populate_network(network, weights)
    # Build and return an engine.
    plan = builder.build_serialized_network(network, config)
    return runtime.deserialize_cuda_engine(plan)


# Loads a random test case from pytorch's DataLoader
def load_random_test_case(model, pagelocked_buffer):
    # Select an image at random to be the test case.
    img, expected_output = model.get_random_testcase()
    # Copy to the pagelocked input buffer
    np.copyto(pagelocked_buffer, img)
    return expected_output


def main():
    common.add_help(description="Runs an MNIST network using a PyTorch model")
    # 训练pytorch模型
    mnist_model = model.MnistModel()
    mnist_model.learn()
    # 训练结束后,可以获得训练后的权重字典
    weights = mnist_model.get_weights()
    # 使用训练好的权重来构建tensorrt的引擎对象
    engine = build_engine(weights)
    # Build an engine, allocate buffers and create a stream.
    # For more information on buffer allocation, refer to the introductory samples.
    inputs, outputs, bindings, stream = common.allocate_buffers(engine)
    context = engine.create_execution_context()
	# 随机抽取推理样本,保存在inputs中,case_num是抽出的样本的真实值
    case_num = load_random_test_case(mnist_model, pagelocked_buffer=inputs[0].host)
    # For more information on performing inference, refer to the introductory samples.
    # The common.do_inference function will return a list of outputs - we only have one in this case.
    # 开始推理,并产生推理结果output
    [output] = common.do_inference_v2(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
    pred = np.argmax(output)
    # 清除缓存
    common.free_buffers(inputs, outputs, stream)
    # 输出真实值
    print("Test Case: " + str(case_num))
    # 输出测试值
    print("Prediction: " + str(pred))


if __name__ == "__main__":
    main()

代码没时间看的,后续完成后我再补上-~


http://www.kler.cn/a/132813.html

相关文章:

  • 几何合理的分片段感知的3D分子生成 FragGen - 评测
  • 正则表达式语法详解(python)
  • 【动手学深度学习Pytorch】1. 线性回归代码
  • 论文笔记(五十六)VIPose: Real-time Visual-Inertial 6D Object Pose Tracking
  • AI 编程编辑器和工具
  • Linux(CentOS)安装达梦数据库 dm8
  • 修完这个 Bug 后,MySQL 性能提升了 300%
  • C++加持让python程序插上翅膀——利用pybind11进行c++和python联合编程示例
  • 鸿蒙4.0开发笔记之DevEco Studio如何使用Previewer窗口预览器(一)
  • PDF文件中更改 PDF 文本颜色的最有效解决方案
  • (论文阅读40-45)图像描述1
  • Python几类并行方法比较
  • (二)Pytorch快速搭建神经网络模型实现气温预测回归(代码+详细注解)
  • 一款.NET开源的小巧、智能、免费的Windows内存清理工具 - WinMemoryCleaner
  • 微服务测试怎么做
  • vue2【axios请求】
  • WPF中有哪些布局方式和对齐方法
  • Vue3+Vite实现工程化,attribute属性渲染v-bind指令
  • PyTorch技术和深度学习——四、神经网络训练与优化
  • Vim + YCM + clangd
  • 【Qt开发流程】之HelloWorld程序
  • demo(一)eureka----服务注册与提供
  • 图数据库Neo4J 中文分词查询及全文检索(建立全文索引)
  • C++关系运算符重载
  • PHP 中传值与传引用的区别,什么时候传值什么时候传引用?
  • html书本翻页效果,浪漫表白日记本(附源码)