当前位置: 首页 > article >正文

数据结构——树状数组

文章目录

  • 前言
  • 问题引入
  • 问题分析
  • 树状数组
    • `lowbit`
    • 树状数组特性
    • 初始化一个树状数组
    • 更新操作
    • 前缀和计算
    • 区间查询
  • 总结


前言

原题的连接
最近刷leetcode的每日一题的时候,遇到了一个区间查询的问题,使用了一种特殊的数据结构树状数组,学习完之后我不禁感叹这个数据结构设计的巧妙,下面是我的学习笔记。

问题引入

给你一个数组 nums ,请你完成两类查询。

其中一类查询要求 更新 数组 nums 下标对应的值
另一类查询要求返回数组 nums 中索引 left 和索引 right 之间( 包含 )的nums元素的 和 ,其中 left <= right
实现 NumArray 类:

  • NumArray(int[] nums) 用整数数组 nums 初始化对象
  • void update(int index, int val) 将 nums[index] 的值 更新 为 val
  • int sumRange(int left, int right) 返回数组 nums 中索引 left 和索引 right 之间( 包含 )的nums元素的 和 (即,nums[left] + nums[left + 1], …, nums[right])

问题分析

这个问题我们可以总结为 :

  • 单点修改,就是一次只修改一个数(与之相对的是区间修改)
  • 区间查询,查询某一个区间的和

我们如果用暴力的求解,在每次单点修改之后都需要重新计算一下区间的和,显然效率低下。
那我们如果使用前缀和数组进行求解,这样所有的区间和问题都可以转换成区间边界前缀和相减,但是每次单点修改之后,修改位之后的所有前缀和都需要修改。
通过上面的思考,我们发现每次单点修改,之后重新计算前缀和的成本太高了。那有没有一种方法能缩小这种由于单点更新导致的前缀和重新计算?

树状数组

我们先看一下树状数组长什么样子:
假设我们现在有一个数组a[]={1,5,7,4,3,2,1,6,7,3,0,4,9}
在这里插入图片描述

然后上图展示的就是一个树状数组,树状数组实际上一个数组,但是在逻辑结构上看做一个树形结构。其实和堆的底层结构是一样的。
数组的每个元素实际上代表的是某一个区间和,而树状数组设计巧妙的就是这个区间覆盖的长度的设计!
然后我们来逐一分析如何得到这么一颗树形结构

lowbit

什么一个数的lowbit ?
lowbit是最截取一个数二进制最低位的二进制1 到最末尾
例如数字6,他的二进制位为0110,取出它的lowbit位就变成了10转换成十进制就是2!
在这里插入图片描述
例如数字8,他的二进制为1000,取出它的lowbit位就变成了1000转换成十进制就是8
在这里插入图片描述
那么如何计算数字a的lowbit呢?
这个只需要 a&(-a),就是a与上a的补码加1,补码加一使得最右边的1右边的所有位与a的二进制位均相同,而左边的位全部与a的二进制相反,这样一个操作直接能取出。

所以lowbit的函数就为:

	// 计算lowbit数值 
	int lowbit(int x) {
		return x & (-x);
	}

树状数组特性

理解了lowbit的概念之后我们在看这个树状数组:
我们对树状数组t[i]的定义是:原数组a在区间[i-lowbit(i),i]区间上的和(i的下标从1开始)
在这里插入图片描述

我们发现了树状数组实际上遵循以下规律:

  1. t[i] 实际上代表的是一个a数组的某个区间的和,而这个区间长度正好是lowbit(i)
  2. t[i]的父节点为t[i+lowbit(i)],而父区间一定是包含子区间的,所以子区间发生更新之后,一定需要修改父区间
  3. t[i]实际上就是数组在[i-lowbit(i)+1,i]这个区间上面的和

初始化一个树状数组

如果要初始化一个树状数组,我们需要定义两个数组,一个是用来保存原始的数组,一个用来保存树状数组:
初始化树状数组其实很简单:我们只需要牢记规律1,计算t[i]时,而为右边界通过规律1反推出左边界,就能计算出区间和

class TreeArray {

private:
	vector<int> t;   // 树状数组
	vector<int> v;    // 原始数组
		// 计算lowbit数值 
	int lowbit(int x) {
		return x & (-x);
	}
public:
	// 初始化树状数组
	void Init(const vector<int>& x) {
		// 注意这里的v和t 下标都不是从0开始的,而是从1开始的
		v.resize(x.size() + 1);
		copy(x.begin(), x.end(), (++v.begin()));
		t.resize(x.size() + 1, 0);
		for (int i = 1; i <= x.size(); i++) {
			for (int j = i - lowbit(i) + 1; j <= i; j++) {
				t[i] += v[j];
			}
		}
	}
};

更新操作

更新操作也十分简单,由于更新之后需要修改某些区间和,这里牢记规律2,从子区间向上更新父区间,然后更新v和t数组

例如:下面我们需要修改下标为3的值,将它的值修改为4,那么区间和就需要增加1,然后将所有包含下标为3的区间都进行修改
在这里插入图片描述


class TreeArray {

private:
	vector<int> t;   // 树状数组
	vector<int> v;    // 原始数组

	// 计算lowbit数值 
	int lowbit(int x) {
		return x & (-x);
	}
public:
	// 初始化树状数组
	void Init(const vector<int>& x) {
		v.resize(x.size() + 1);
		copy(x.begin(), x.end(), (++v.begin()));
		t.resize(x.size() + 1, 0);
		for (int i = 1; i <= x.size(); i++) {
			for (int j = i - lowbit(i) + 1; j <= i; j++) {
				t[i] += v[j];
			}
		}
	}
	void Update(int index, int val) {
		// 传入的index是从0开始的,但是我们这里的树状数组下标是从1开始
		int dif = val - v[index + 1];  // 这里我们计算一个差值
		v[index + 1] = val;
		// 修改index的所有的父节点
		for (int i = index + 1; i < t.size(); i += lowbit(i)) {
			t[i] += dif;
		}
	}
};

前缀和计算

前缀和这个就更简单了,更具树状数组的定义

我们对树状数组t[i]的定义是:原数组a在区间[i-lowbit(i)+1,i]区间上的和(i的下标从1开始)

比方说我们要计算下标为7的前缀和,我们可以拆成t[7]+t[6]+t[4],而我们发现7减去区间长度(lowbit(7))就是t[6],而t[6]减去区间长度t[4]…
这就是线段树的设计巧妙之处,把前缀和转换成多个树状数组元素相加!

在这里插入图片描述

class TreeArray {
private:
	vector<int> t;   // 树状数组
	vector<int> v;    // 原始数组
	// 计算lowbit数值 
	int lowbit(int x) {
		return x & (-x);
	}
public:
	// 初始化树状数组
	void Init(const vector<int>& x) {
		v.resize(x.size() + 1);
		copy(x.begin(), x.end(), (++v.begin()));
		t.resize(x.size() + 1, 0);
		for (int i = 1; i <= x.size(); i++) {
			for (int j = i - lowbit(i) + 1; j <= i; j++) {
				t[i] += v[j];
			}
		}
	}
	void Update(int index, int val) {
		// 传入的index是从0开始的,但是我们这里的树状数组下标是从1开始
		int dif = val - v[index + 1];
		v[index + 1] = val;
		// 修改index的所有的父节点
		for (int i = index + 1; i < t.size(); i += lowbit(i)) {
			t[i] += dif;
		}
	}
	// 算出index的前缀和
	int GetPrefixSum(int index) {
		int sum = 0;
		for (int i = index + 1; i > 0; i -= lowbit(i)) {
			sum += t[i];
		}
		return sum;
	}
};

区间查询

我们直接把区间查询转换成 前缀和相减!

class TreeArray {

private:
	vector<int> t;   // 树状数组
	vector<int> v;    // 原始数组

	// 计算lowbit数值 
	int lowbit(int x) {
		return x & (-x);
	}
public:
	// 初始化树状数组
	void Init(const vector<int>& x) {
		v.resize(x.size() + 1);
		copy(x.begin(), x.end(), (++v.begin()));
		t.resize(x.size() + 1, 0);
		for (int i = 1; i <= x.size(); i++) {
			for (int j = i - lowbit(i) + 1; j <= i; j++) {
				t[i] += v[j];
			}
		}
	}
	void Update(int index, int val) {
		// 传入的index是从0开始的,但是我们这里的树状数组下标是从1开始
		int dif = val - v[index + 1];
		v[index + 1] = val;
		// 修改index的所有的父节点
		for (int i = index + 1; i < t.size(); i += lowbit(i)) {
			t[i] += dif;
		}
	}

	// 算出index的前缀和
	int GetPrefixSum(int index) {
		int sum = 0;
		for (int i = index + 1; i > 0; i -= lowbit(i)) {
			sum += t[i];
		}
		return sum;
	}
	// 区间查询
	int Select(int begin, int end) {
		return GetPrefixSum(end) - GetPrefixSum(begin - 1);
	}
};

总结

树状数组 实际上是对前缀和的优化,前缀和计算的是[0,i]的和,如果一个修改就要对所有的区间和修改,但是树状数组将区间的长度通过lowbit的巧妙构造,使得每次单点修改所要更新的区间和始终不超过O(logN)

树状数组的使用条件(遇到这种情况直接默写模版):

  • 单点更新
  • 区间查询

然后默写树状数组的时候牢记三个规律,AC这类题应该没有多大问题


http://www.kler.cn/a/134932.html

相关文章:

  • 多进程/线程并发服务器
  • ubuntu中apt-get的默认安装路径。安装、卸载以及查看的方法总结
  • Kafka - 启用安全通信和认证机制_SSL + SASL
  • HarmonyOS Next星河版笔记--界面开发(4)
  • 【真题笔记】21年系统架构设计师案例理论点总结
  • 如何在Puppeteer中实现表单自动填写与提交:问卷调查
  • 拜托!佛系点,你只是给社区打工而已
  • 设计模式(5)-使用设计模式实现简易版springIoc
  • 单链表相关面试题--3.给定一个带有头结点 head 的非空单链表,返回链表的中间结点。如果有两个中间结点,则返回第二个中间结点
  • Java的IO流-打印流
  • 【机器学习】特征工程:特征选择、数据降维、PCA
  • OpenCV C++ 图像 批处理 (批量调整尺寸、批量重命名)
  • 关于漏洞:检测到目标SSL证书已过期【原理扫描】
  • 自用函数(持续更新)
  • 数理统计的基本概念(一)
  • Selenium UI 自动化
  • Mapmost Alpha,一款非常好用且强大的三维城市创建工具~!
  • 反渗透水处理成套设备有哪些
  • 分享职业技术培训类型
  • HarmonyOS脚手架:快捷实现ArkTs中json转对象
  • Linux环境搭建(tomcat,jdk,mysql下载)
  • JS进阶——高阶技巧
  • 2 Redis的高级数据结构
  • 2024年测试工程师必看系列之fiddler设置手机端抓包全套教程
  • 为什么选择B+树作为数据库索引结构?
  • 前端常用utils方法持续更新中