当前位置: 首页 > article >正文

【数据结构】二叉树之链式结构

在这里插入图片描述
🔥博客主页 小羊失眠啦.
🎥系列专栏《C语言》 《数据结构》 《Linux》《Cpolar》
❤️感谢大家点赞👍收藏⭐评论✍️


在这里插入图片描述

文章目录

  • 一、前置说明
  • 二、二叉树的遍历
    • 2.1 前序遍历
    • 2.2 中序遍历
    • 2.3 后序遍历
    • 2.4 层序遍历
  • 三、二叉树的结点个数
    • 3.1 二叉树的总结点数
    • 3.2 二叉树的叶子结点数
    • 3.3 二叉树第k层结点数
  • 四、二叉树的高度/深度
  • 五、二叉树的查找
  • 六、二叉树的创建和销毁

一、前置说明

在学习二叉树各种各样的操作前,我们先来回顾一下二叉树的概念:

二叉树是度不超过2的树,由根结点和左右2个子树组成,每个子树也可以看作一颗二叉树,又可以拆分为根结点和左右两颗子树…

在这里插入图片描述

是不是很熟悉,一个大问题可以拆分为两个子问题,每个子问题又可以拆分为更小的子问题,这样层层拆分到不可拆分(遇到空树)的过程,不就是递归吗!因此,我们可以得出:

树是递归定义的,后续树的各种操作正是围绕着这一点进行的。

二、二叉树的遍历

我们先从最简单的操作----遍历学起。所谓二叉树遍历(Traversal)就是按照某种特定的规则,依次对二叉树中的结点进行相应的操作,并且每个节点有且只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。二叉树的遍历分为四种:前序遍历中序遍历后序遍历层序遍历

2.1 前序遍历

前序遍历(Preorder Traversal)又称先根遍历,即先遍历根结点,再遍历左子树,最后遍历右子树。而对于子树的遍历,也服从上述规则。利用递归,我们可以很快地写出代码:

//前序遍历
void PrevOrder(BTNode* root) {
	//遇到空树,递归终点
    if (root == NULL) {
		printf("NULL ");

		return;
	}
    //对根节点进行操作(此处为打印)
	printf("%d ", root->val);
    //递归遍历左子树
	PrevOrder(root->left);
    //递归遍历右子树
	PrevOrder(root->right);
}

为了更好地理解这个过程,我们可以画出递归展开图如下:

在这里插入图片描述

2.2 中序遍历

中序遍历(Inorder Traversal)又称中根遍历,即先遍历左子树,再遍历根结点,最后遍历右子树。同样,子树的遍历规则也是如此。递归代码如下:

void InOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}

	InOrder(root->left);
	printf("%d ", root->val);
	InOrder(root->right);
}

2.3 后序遍历

后序遍历(Inorder Traversal)又称后根遍历,即先遍历左子树,再遍历右子树,最后遍历根结点。照葫芦画瓢,递归代码如下:

void PostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}

	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d ", root->val);
}

2.4 层序遍历

除了上面的前中后序遍历,还可以对二叉树进行层序遍历。所谓层序遍历就是从所在二叉树的根节点出发,首先访问第1层的根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推。这样自上而下,自左向右逐层访问树的结点的过程就是层序遍历。

在这里插入图片描述

与前面三种遍历不同,层序遍历属于广度优先遍历,因此我们可以利用队列先进先出的特性,将每个结点一层一层依次入队,然后依次出队进行操作即可。具体演示及代码如下:

img

void LevelOrder(BTNode* root)
{
	Que q;
	QueueInit(&q);

	if (root)
		QueuePush(&q, root);

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		printf("%d ", front->val);
		if (front->left)
			QueuePush(&q, front->left);

		if (front->right)
			QueuePush(&q, front->right);

		QueuePop(&q);
	}
	printf("\n");

	QueueDestroy(&q);
}

在这里插入图片描述

三、二叉树的结点个数

3.1 二叉树的总结点数

一颗二叉树的结点数我们可以看作是根结点+左子树结点数+右子树结点数,那左右子树的结点数又是多少呢?按照相同的方法继续拆分,层层递归直到左右子树为空树,返回空树的结点数0即可。递归代码如下:

int TreeSize(BTNode* root)
{
	return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->right) + 1;
}

3.2 二叉树的叶子结点数

左右子树都为空的结点即是叶子结点。这里分为两种情况:左右子树都为空左右子树不都为空

  1. 当左右子树都为空时,则这颗树的叶子结点数为1(根节点)。

  2. 当左右子树不都为空,即根结点不是叶子结点时,这棵树的叶子结点数就为左子树叶子结点数+右子树叶子结点数(空树没有叶子结点)。

int TreeLeafSize(BTNode* root)
{
	if (root == NULL)
		return 0;

	if (root->left == NULL && root->right == NULL)
	{
		return 1;
	}

	return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}

3.3 二叉树第k层结点数

类似的,一颗树第k层的结点数我们可以拆分为其左子树第k-1层结点+右子树第k-1层结点。这样层层递归下去,直到k==1求树的第1层结点数时返回1(树的第1层只有根结点),而如果在递归过程中遇到空树就返回0(空树没有结点)。例如下面一颗树:

在这里插入图片描述

int TreeKLevel(BTNode* root, int k)
{
	assert(k > 0);

	if (root == NULL)
		return 0;

	if (k == 1)
	{
		return 1;
	}

	return TreeKLevel(root->left, k - 1)
		+ TreeKLevel(root->right, k - 1);
}

在这里插入图片描述

四、二叉树的高度/深度

树中结点的最大层次称为二叉树的高度。因此,一颗二叉树的高度我们可以看作是

1(根结点)+左右子树高度的较大值。层层递归下去直到遇到空树返回0即可,递归代码如下:

int TreeHeight(BTNode* root)
{
	if (root == NULL)
		return 0;

	return fmax(TreeHeight(root->left), TreeHeight(root->right)) + 1;
}

在这里插入图片描述

五、二叉树的查找

二叉树的查找本质上就是一种遍历,只不过是将之前的打印操作换为查找操作而已。我们可以使用前序遍历来进行查找,先比较根结点是否为我们要查找的结点,如果是,之间返回;如果不是,遍历左子树和右子树,返回其查找的结果;如果都找不到,返回空指针。代码如下:

// 二叉树查找值为x的结点
BTNode* TreeFind(BTNode* root, int x)
{
	if (root == NULL)
		return NULL;

	if (root->val == x)
		return root;

	BTNode* ret = NULL;
	ret = TreeFind(root->left, x);
	if (ret)
		return ret;

	ret = TreeFind(root->right, x);
	if (ret)
		return ret;

	return NULL;
}

六、二叉树的创建和销毁

最后,我们再来看看如何来创建和销毁一颗二叉树。我们前面说过:二叉树是递归定义的。有了前面的基础,二叉树的创建和销毁也就不是什么难事了。

BTNode* BuyNode(int x)
{
	BTNode* node = (BTNode*)malloc(sizeof(BTNode));
	if (node == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}

	node->val = x;
	node->left = NULL;
	node->right = NULL;

	return node;
}

// 二叉树销毁
void TreeDestroy(BTNode* root)
{
	if (root == NULL)
	{
		return;
	}

	TreeDestroy(root->left);
	TreeDestroy(root->right);
	free(root);
	//root = NULL;
}

本次的内容到这里就结束啦。希望大家阅读完可以有所收获,同时也感谢各位铁汁们的支持。文章有任何问题可以在评论区留言,小羊一定认真修改,写出更好的文章~~

在这里插入图片描述


http://www.kler.cn/a/147295.html

相关文章:

  • 《生成式 AI》课程 第3講 CODE TASK 任务3:自定义任务的机器人
  • Android加载pdf
  • HBase压测 ycsb
  • 十堰市数据治理:大数据治理在智慧城市中的应用探索
  • 车载诊断架构 --- 关于DTC的开始检测条件
  • 如何利用WebSockets实现高效的实时通信应用
  • 希尔伯特和包络变换
  • Redis使用increment方法返回null的原因以及解决方案
  • Django整合回顾
  • Redis面试内容,Redis过期策略,Redis持久化方式,缓存穿透、缓存击穿和缓存雪崩,以及解决办法
  • 网络运维与网络安全 学习笔记2023.11.27
  • 【C++ Primer Plus学习记录】for循环与while循环
  • 基于阻塞队列的生产者消费者模型
  • C语言:选择法对十个整数排序
  • 爬取极简壁纸
  • css实现鼠标移入背景图片变灰并浮现文字的效果
  • linux 命令 sudo、su 命令
  • 小H喜欢睡觉(C语言实现)
  • 多传感器融合SLAM调研
  • 前端项目部署自动检测更新后通知用户刷新页面(前端实现,技术框架vue、js、webpack)——方案一:编译项目时动态生成一个记录版本号的文件
  • C#——多线程之异步调用容易出现的问题
  • Go语言初始化已有环境,跟踪已有依赖环境
  • Android设计模式--桥接模式
  • 数据可视化:在Jupyter中使用Matplotlib绘制常用图表
  • Echarts大屏可视化_02 球体模块制作
  • kafka的详细安装部署