Flink Flink中的分流
一、什么是分流
所谓“分流”,就是将一条数据流拆分成完全独立的两条、甚至多条流。也就是基于一个DataStream,定义一些筛选条件,将符合条件的数据拣选出来放到对应的流里。
二、基于filter算子的简单实现分流
其实根据条件筛选数据的需求,本身非常容易实现:只要针对同一条流多次独立调用.filter()方法进行筛选,就可以得到拆分之后的流了。
案例需求:读取一个整数数字流,将数据流划分为奇数流和偶数流。
package com.flink.DataStream.SplitStream;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.configuration.RestOptions;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class FlinkSplitStreamByFilter {
public static void main(String[] args) throws Exception {
//TODO 创建Flink上下文执行环境
StreamExecutionEnvironment streamExecutionEnvironment = StreamExecutionEnvironment
.createLocalEnvironmentWithWebUI(new Configuration().set(RestOptions.BIND_PORT, "8081"));
//.getExecutionEnvironment();
//TODO 设置全局并行度为2
streamExecutionEnvironment.setParallelism(2);
DataStreamSource<String> dataStreamSource = streamExecutionEnvironment.socketTextStream("localhost", 8888);
//TODO 先将输入流转为Integer类型
SingleOutputStreamOperator<Integer> mapResult = dataStreamSource.map((input) -> {
int i = Integer.parseInt(input);
return i;
});
//TODO 使用匿名函数分流偶数流
SingleOutputStreamOperator<Integer> ds1 = mapResult.filter(new FilterFunction<Integer>() {
@Override
public boolean filter(Integer a) throws Exception {
return a % 2 == 0;
}
});
//TODO 使用lamda表达式分流奇数流
SingleOutputStreamOperator<Integer> ds2 = mapResult.filter((a) -> a % 2 == 1);
ds1.print("偶数流");
ds2.print("奇数流");
streamExecutionEnvironment.execute();
}
}
执行结果
奇数流:1> 1
偶数流:2> 2
偶数流:1> 2
偶数流:2> 4
奇数流:1> 3
奇数流:2> 1
Process finished with exit code 130 (interrupted by signal 2: SIGINT)
这种实现非常简单,但代码显得有些冗余——我们的处理逻辑对拆分出的三条流其实是一样的,却重复写了三次。而且这段代码背后的含义,是将原始数据流 stream 复制三份,然后对每一份分别做筛选;这明显是不够高效的。我们自然想到,能不能不用复制流,直接用一个算子就把它们都拆分开呢?
三、使用测输出流
如何使用处理函数中侧输出流。简单来说,只需要调用上下文 ctx 的.output()方法,就可以输出任意类型的数据了。而侧输出流的标记和提取,都离不开一个“输出标签”(OutputTag),指定了侧输出流的 id 和类型。
package com.flink.DataStream.SplitStream;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;
public class SplitStreamByOutputTag {
public static void main(String[] args) throws Exception {
//TODO 创建Flink上下文环境
StreamExecutionEnvironment streamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment();
//TODO 设置并行度为1
streamExecutionEnvironment.setParallelism(1);
//TODO Source
DataStreamSource<String> dataStreamSource = streamExecutionEnvironment.socketTextStream("localhost", 8888);
//TODO Transform
SingleOutputStreamOperator<Object> outputStreamOperator = dataStreamSource.map(new MapFunction<String, Object>() {
@Override
public Object map(String input) throws Exception {
//将socket输入的string转为Int类型
return Integer.parseInt(input);
}
});
//在main函数中new2个输出标签
OutputTag<Integer> ji = new OutputTag<Integer>("ji", Types.INT){};
OutputTag<Integer> ou = new OutputTag<Integer>("ou", Types.INT){};
//调用底层算子process
SingleOutputStreamOperator<Object> output0 = outputStreamOperator.process(new ProcessFunction<Object, Object>() {
@Override
public void processElement(Object value, ProcessFunction<Object, Object>.Context context, Collector<Object> collector) throws Exception {
int i = Integer.parseInt(value.toString());
if (i < 0) {
//如果小于0就侧输出流为负数
context.output(ou, i);
} else if (i > 10) {
//如果大于10就侧输出流为异常
context.output(ji, i);
} else {
//其他视为正常值流入主流
collector.collect(i);
}
}
});
//TODO Sink
output0.print("正常");
DataStream<Integer> output1 = output0.getSideOutput(ji);
DataStream<Integer> output2 = output0.getSideOutput(ou);
output1.printToErr("负数");
output2.printToErr("异常");
//TODO 执行
streamExecutionEnvironment.execute();
}
}