图论 2023.11.27
Kruskal定义不同的优先级
P3623 [APIO2008] 免费道路
给定一个无向图,其中一些边是0,其他边为1
两个不同的点之间都应该一条且仅由一条边连接
并保持刚好K条0,求是否有解决方案
n<=2e4,m<=1e5
Kruskal定义不同的优先级
思路:Kruskal先以1边优先,筛出必须要的0边
之后Kruskal先添加必须要的的0边,再以0边优先,把0边添加至k后,再添1边,最后还要检查图的连通性
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 1e6 + 10;
int n, m, k, fa[N], tot, cnt;
struct edge {
int u, v, w;
}e[N], ans[N];
bool cmp1(edge e1, edge e2) {
return e1.w > e2.w;
}
bool cmp2(edge e1, edge e2) {
return e1.w < e2.w;
}
int find(int x) {
return x == fa[x] ? x:fa[x] = find(fa[x]);
}
void init() {
cnt = tot = 0;
for (int i = 1; i <= n; i++) fa[i] = i;
}
void check() {
int tmp = find(1);
for (int i = 2; i <= n; i++) {
int f = find(i);
if (f != tmp) {
printf("no solution\n");
exit(0);
}
tmp = f;
}
}
int main()
{
cin >> n >> m >> k;
for (int i = 1; i <= m; i++)
cin >> e[i].u >> e[i].v >> e[i].w;
init();
sort(e + 1, e + m + 1, cmp1); //从大到小(1边优先)
for (int i = 1; i <= m; i++) {
int x = find(e[i].u);
int y = find(e[i].v);
if (x == y) continue;
fa[x] = y;
if (e[i].w == 0) {
tot++, e[i].w = -1; //定为必须边,下次的Kruskal此边为最高优先级
}
}
if (tot > k) { //(1边优先)0边>k,0边优先时,0边依然>k
printf("no solution\n");
return 0;
}
check();
init();
sort(e + 1, e + m + 1, cmp2);
for (int i = 1; i <= m; i++) {
int f1 = find(e[i].u), f2 = find(e[i].v);
if (f1 == f2) continue;
if (e[i].w == 1 || tot < k) {
fa[f1] = f2;
if (e[i].w < 1) {
tot++, e[i].w = 0;
}
ans[++cnt] = e[i];
}
}
if (tot < k) {
printf("no solution\n");
return 0;
}
check();
for (int i = 1; i <= cnt; i++) {
printf("%d %d %d\n", ans[i].u, ans[i].v, ans[i].w);
}
return 0;
}
几何联通
P3958 [NOIP2017 提高组] 奶酪
给定一个它的高度为 h,它的长度和宽度我们可以认为是无限大的奶酪,有n个空洞坐标为(x,y,z)
统一半径为r,能否利用已有的空洞跑 到奶酪的上表面去
深度优先搜索,不需要回溯,进入和出来判断只需看z-r,z+r和0,h的比较
n<=1e3,h,r<=1e9
#include<iostream>
#include<algorithm>
#include<string.h>
#include<cstring>
#include<math.h>
using namespace std;
const int N = 1e3 + 10;
int n;
double h, r;
int vis[N];
int ans;
struct cir {
double x, y, z;
bool operator <(const cir& c)const { //按从低到高
return z < c.z;
}
}a[N];
double dist(double x1, double y1, double z1, double x2, double y2, double z2){
return sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) + (z2 - z1) * (z2 - z1));
}
void dfs(int now) {
if (ans) return;
if (a[now].z + r>= h) {
ans = 1;
return;
}
vis[now] = 1;
for (int i = 1; i <= n; i++) {
if (vis[i]) continue;
if (dist(a[now].x, a[now].y, a[now].z, a[i].x, a[i].y, a[i].z) > 2 * r) continue;
dfs(i);
}
}
void solve() {
memset(vis, 0, sizeof(vis));
ans = 0;
cin >> n >> h >> r;
for (int i = 1; i <=n; i++) {
cin >> a[i].x >> a[i].y >> a[i].z;
}
sort(a + 1, a + 1 + n);
for (int i = 1; i <= n; i++) {
if (a[i].z- r <= 0) {
dfs(i); //深搜
}
}
if (!ans) {
cout << "No" << '\n';
}
else {
cout << "Yes" << '\n';
}
}
int main()
{
int t;
cin >> t;
while (t--) solve();
}
二维联通
P2498[SDOI2012] 拯救小云公主
给定一个row行line列大小的矩阵,给定n个boss的位置,需要从左下角,到达右上角
找一条路径使到距离boss的最短距离最远,输出最远距离
n<=3000
思路:小数二分最远距离,boss点作为圆心, 参考奶酪
左边界或上边界通过这些洞和右边界或下边界联通时,问题无解
#include<iostream>
#include<cstring>
#include<math.h>
#include<queue>
using namespace std;
int dis[3001][3001];
int x[3001], y[3001];
int getdis(int x1, int y1, int x2, int y2) {
return pow(x1 - x2, 2) + pow(y1 - y2, 2);
}
bool able(int d, double r) {
return r * r * 4 > d;
}
int row, line, n;
queue<int>q;
bool vis[3001];
bool bfs(double r) {
memset(vis, 0, sizeof(vis));
while (!q.empty())q.pop();
for (int i = 1; i <= n; i++) {
if (row - y[i] < r||x[i]<r) { // 左下角(row, 0)出发通过这些圆
q.push(i), vis[i] = 1;
}
}
while (!q.empty()) {
int p = q.front();
q.pop();
if (y[p] < r|| line - x[p] < r) { //右上角(0,line)通过这些圆
return 0;
}
for (int i = 1; i <= n; i++)
if (!vis[i] && able(dis[p][i], r)) {
vis[i] = 1, q.push(i);
}
}
return 1;
}
int main() {
cin >> n >> line >> row;
line--; row--;
for (int i = 1; i <= n; i++) {
cin >> x[i] >> y[i];
x[i]--;
y[i]--;
}
for (int i = 1; i <= n; i++)
for (int j = 1; j < i; j++)
dis[i][j] = dis[j][i] = getdis(x[i], y[i], x[j], y[j]);
double l = 0, r = min(row, line), mid;
for (int i = 1; i <= 60; i++) {
mid = (l + r) / 2;
if (bfs(mid))l = mid;
else r = mid;
}
printf("%.2lf\n", l);
return 0;
}
视为T在S之间滑动,转换为拓扑图目标所有窗口匹配,即度数为0 (atcoder 329 E)
给定一个长度为n字符串S,长度为m的字符串T
将长度为n字符串全是#变成S,操作:用T替换S的部分区间
n<=2e5,m<=5
思路:视为T在S之间滑动,于是有n-m+1的窗口
转换为拓扑图:入度为每个窗口不匹配的数量,一旦为0完全匹配,边为该窗口不匹配的字符,编号为(窗口编号i相连字符编号i+j)
之后拓扑,ans倒序后得到操作的顺序,目标为所有窗口完全匹配因为(视为T在S之间滑动)
#include<bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<map>
#include<set>
#include<queue>
#include<cstring>
#include<math.h>
#include<map>
#include<vector>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<bitset>
#include<array>
using namespace std;
#define endl '\n'
#define ios ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
#define int long long
#define int128 __int128_t
#define ll long long
#define ld long double
typedef unsigned long long ull ;
#define fr(i,l,r) for(int i=l;i<=r;i++)
#define fer(i,x) for(int i=e.head[x];i;i=e.next[i])
#define ufr(i,n,z) for(int i = n;i >= z; i--)
#define pb(x) push_back(x)
#define all(a) a.begin(),a.end()
#define fi first
#define se second
typedef pair<int,int> pr;
const int N = 1e6+10;
const int mod=998244353,inf=1e18;
int n,m;
int a[N];
map<int,int>mp;
void solve()
{
cin>>n>>m;
string s,t;
cin>>s>>t;
vector<int>in(n+1,m);
vector<vector<int>>e(n+1); //边
queue<int>q;
for(int i=0;i<n-m+1;i++){
for(int j=0;j<m;j++){
if(s[i+j]==t[j]){
in[i]--;
if(in[i]==0){ //完全与t对应
q.push(i);
}
}
else{
e[i+j].push_back(i);
}
}
}
vector<int>ans;
while(!q.empty()){
int u=q.front();
q.pop();
ans.push_back(u);
for(int i=0;i<m;i++){
if(mp[u+i]){
continue;
}
mp[u+i]=1;
for(auto it:e[u+i]){
in[it]--;
if(in[it]==0){
q.push(it);
}
}
}
}
reverse(ans.begin(),ans.end()); //每一次操作位置
if(ans.size()<n-m+1){
cout<<"No"<<'\n';
}
else{
cout<<"Yes"<<'\n';
}
}
signed main()
{
ios;
int t=1;
// cin>>t;
while(t--) solve();
return 0;
}