证明E(X+Y) =E(X) + E(Y)
E(X+Y) =E(X) + E(Y)的成立是不需要X和Y相互独立的!!!
离散型随机变量
E ( X + Y ) = ∑ i = 1 n ∑ j = 1 m ( x i + y j ) P { X = x i , Y = y j } = ∑ i = 1 n ∑ j = 1 m x i P { X = x i , Y = y j } + ∑ i = 1 n ∑ j = 1 m y j P { X = x i , Y = y j } = ∑ i = 1 n x i ∑ j = 1 m P { X = x i , Y = y j } + ∑ i = 1 n y j ∑ j = 1 m P { X = x i , Y = y j } = ∑ i = 1 n x i P { X = x i } + ∑ i = 1 n y j P { Y = y j } = E ( X ) + E ( Y ) \begin{align*} E(X+Y) &= \sum_{i=1}^{n}\sum_{j=1}^{m}(x_i+y_j)P\{X=x_i,Y=y_j\}\\ &= \sum_{i=1}^{n}\sum_{j=1}^{m}x_iP\{X=x_i,Y=y_j\}+ \sum_{i=1}^{n}\sum_{j=1}^{m}y_jP\{X=x_i,Y=y_j\}\\ &=\sum_{i=1}^{n}x_i\sum_{j=1}^{m}P\{X=x_i,Y=y_j\}+\sum_{i=1}^{n}y_j\sum_{j=1}^{m}P\{X=x_i,Y=y_j\}\\ &=\sum_{i=1}^{n}x_iP\{X=x_i\}+\sum_{i=1}^{n}y_jP\{Y=y_j\}\\ &=E(X)+E(Y) \end{align*} E(X+Y)=i=1∑nj=1∑m(xi+yj)P{X=xi,Y=yj}=i=1∑nj=1∑mxiP{X=xi,Y=yj}+i=1∑nj=1∑myjP{X=xi,Y=yj}=i=1∑nxij=1∑mP{X=xi,Y=yj}+i=1∑nyjj=1∑mP{X=xi,Y=yj}=i=1∑nxiP{X=xi}+i=1∑nyjP{Y=yj}=E(X)+E(Y)
连续型随机变量
E ( X + Y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ ( x + y ) p ( x , y ) d x d y = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x p ( x , y ) d x d y + ∫ − ∞ + ∞ ∫ − ∞ + ∞ y p ( x , y ) d x d y = ∫ − ∞ + ∞ x d x ∫ − ∞ + ∞ p ( x , y ) d y + ∫ − ∞ + ∞ y d y ∫ − ∞ + ∞ p ( x , y ) d x = ∫ − ∞ + ∞ x f X ( x ) d x + ∫ − ∞ + ∞ y f Y ( y ) d y = E ( X ) + E ( Y ) \begin{align*} E(X+Y) &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}(x+y)p(x,y)dxdy\\ &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xp(x,y)dxdy + \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}yp(x,y)dxdy\\ &= \int_{-\infty}^{+\infty}xdx\int_{-\infty}^{+\infty}p(x,y)dy + \int_{-\infty}^{+\infty}ydy\int_{-\infty}^{+\infty}p(x,y)dx\\ &= \int_{-\infty}^{+\infty}xf_X(x)dx + \int_{-\infty}^{+\infty}yf_Y(y)dy\\ &= E(X) + E(Y) \end{align*} E(X+Y)=∫−∞+∞∫−∞+∞(x+y)p(x,y)dxdy=∫−∞+∞∫−∞+∞xp(x,y)dxdy+∫−∞+∞∫−∞+∞yp(x,y)dxdy=∫−∞+∞xdx∫−∞+∞p(x,y)dy+∫−∞+∞ydy∫−∞+∞p(x,y)dx=∫−∞+∞xfX(x)dx+∫−∞+∞yfY(y)dy=E(X)+E(Y)
其实离散型随机变量和连续型随机变量推导的思路是一摸一样的,只不过一个是求和一个是积分而已。需要注意的是,我们并不需要知道联合概率分布 P { X = x i , Y = y j } P\{X=x_i,Y=y_j\} P{X=xi,Y=yj}或联合概率密度 p ( x , y ) p(x,y) p(x,y),而是在过程中计算出边缘分布,这里其实可以体会到边缘分布在推导中带来的作用。
这个公式虽然非常简单,但是非常重要,因为它是一系列期望,方差,协方差公式推导的基础。