当前位置: 首页 > article >正文

Python学习(2)-NumPy矩阵与通用函数

文章首发于:My Blog 欢迎大佬们前来逛逛

1. NumPy矩阵

1.1 mat函数

mat=asmatrix
asmatrix(data, dtype=None):

data:表示输入的数组或者字符串,使用‘,’分割列,使用‘;’分割行

创建两个普通的矩阵:

print(np.mat([1, 2, 3]))
print(np.mat("1,2,3;4,5,6;7,8,9"))
--------
[[1 2 3]]
[[1 2 3]
 [4 5 6]
 [7 8 9]]

需要注意:mat创建的矩阵是不会产生副本的,即共享内存

a1 = np.array([1, 2, 3, 4, 5])
ma1 = np.mat(a1)
ma1[0, 0] = 100
print(ma1)
print(a1)   # a1[0,0]也会改变
---------
[1 2 3 4 5]
[[100   2   3   4   5]]
[100   2   3   4   5]

1.2 matrix函数

matrix也是创建矩阵的:

 matrix(data, dtype=None, copy=True)

data:数组或者字符串,与mat一样

copy:表示创建的矩阵与原数组data是不是拷贝的如果是拷贝的,则不共享内存;否则共享内存

注意到:mat默认共享内存,matrix可以选择拷贝,他们的不同仅此而已

print(np.matrix([1, 2, 3, 4, 5]))
print(np.matrix('1,2,3;4,5,6'))
a1 = np.array([1, 2, 3, 4, 5])
ma1 = np.matrix(a1, copy=True)
ma1[0, 0] = 100
print(a1) # 不变
----------
[[1 2 3 4 5]]
[[1 2 3]
 [4 5 6]]
[1 2 3 4 5]

1.3 bmat函数

bmat可以产生一个分块矩阵

bmat(obj, ldict=None, gdict=None)

obj:数组或者字符串

ldict,gdict:字典

a1 = np.arange(4).reshape(2, 2)
a2 = np.arange(5, 9).reshape(2, 2)
print(a1)
print(a2)
print(np.bmat([a1, a2]))
print(np.bmat('a1,a2;a2,a1')) # 四块 2*2 矩阵合并成一个大的4*4的矩阵
---------
[[0 1]
 [2 3]]
[[5 6]
 [7 8]]
[[0 1 5 6]
 [2 3 7 8]]

[[0 1 5 6]
 [2 3 7 8]
 [5 6 0 1]
 [7 8 2 3]]

1.4 矩阵运算

我们所熟知的运算,NumPy矩阵运算都可以实现:

print(a1 + a2)
print(a1 - a2)
print(a1 * a2) # 注意只能是满足矩阵运算条件 即 m*n 的m的列数要等与n的行数,结果为m的行数*n的列数
print(a1 / a2)
print(a1 ** a2)  
---------
[[ 5  7]
 [ 9 11]]
[[-5 -5]
 [-5 -5]]
[[ 0  6]
 [14 24]]
[[0.         0.16666667]
 [0.28571429 0.375     ]]
[[   0    1]
 [ 128 6561]]

矩阵的特有属性:

  • T:转置
  • H:共轭转置
  • I:逆矩阵
  • A:转换为二维数组
a2 = np.matrix('1,2,3;4,5,6;7,8,9')
print(a2.T)  # 求转置
print(a2.H)  # 共轭转置
print(a2.I)  # 逆矩阵
print(a2.A)  # 自身的二维数组

2. NumPy通用函数

2.1 ufunc运算函数

注意:ufunc的运算操作是对于数组的运算,而不是矩阵,矩阵的运算是 NumPy 实现的。

ufunc的运算不是矩阵的运算,因此对于不符合矩阵乘法条件的两个数组相乘是合法的。

np.all:对于数组的元素需要全部满足

np.any:对于数组的元素只需要存在即可

创建数组:

a3 = np.array([1, 2, 3])
a4 = np.array([2, 3, 4])
print(a3 + a4)
# ....
print(np.all(a3 > 2))  # a3全部元素大于2
print(np.any(a3 > 2))  # a3任意一个元素大于2
-------
[3 5 7]
False
True

2.2 ufunc广播机制

对于数组的运算,我们会对数组的shape有要求;但是如果shape不一样,我们仍然可以对他们进行运算操作,只需要对他们使用广播机制即可。

广播机制必须满足的前提条件:

  1. 两个数组必须具有相同的维数,每个维的长度要么是相同的,要么是1
  2. 维数少的数组需要在其形状上加上n个长度为1的维数,以便使得满足条件1.

例子1:

a1数组是 2行4列的,a2数组是 1行4列的。

我们可以发现,a2数组的行数少 1,因此需要在a2的shape上对其行数加1,使得a2数组变为(2,4),那么他们的形状相同模拟为使得在B的末尾新添加一行与第一行相同的元素,因此可以相加,总结为:

A.shape=(2,4) ;B.shape=(1,4) ----> B.shape=(2,4)

然后再执行A与B相加。

a1 = np.random.randint(0, 8, (2, 4))
a2 = np.random.randint(0, 4, 4)
print(a1)
print(a2)
print(a1 + a2)
-------
[[7 6 3 5]
 [2 7 5 2]]

[1 3 0 2]

[[ 8  9  3  7]
 [ 3 10  5  4]]

例子2:

此时我们的a1的shape是 4行3列,a2的shape是 4行1列,因此需要在a2的shape中对a2的列数加1,直到他们的shape相同,使得a2也变为 4行3列的,模拟在a2的后面新添加两列与第一列相同的元素即可

A,shape=(4,3) B.shape=(4,1) ----> B.shape=(4,3)

然后再执行相加。

a1 = np.random.randint(0, 12, (4, 3))
a2 = np.random.randint(0, 4, (4, 1))
print(a1)
print(a2)
print(a1 + a2)
---------
[[ 0  6  6]
 [11  1  3]
 [ 4 10  6]
 [11  1  4]]
 
[[3]
 [1]
 [2]
 [3]]
 
[[ 3  9  9]
 [12  2  4]
 [ 6 12  8]
 [14  4  7]]

2.3 统计分析函数

2.3.1 排序函数

sort函数直接对对象数组进行升序排序:

a1 = np.random.randint(10, 20, 10)
a1.sort()
print(a1)
-----------
[11 11 12 12 13 15 16 16 18 19]

使用 np.sort() 对数组排序后生成一份拷贝

a1 = np.random.randint(10, 20, 10)
print(np.sort(a1))
print(a1)
--------
[10 10 11 12 13 13 13 15 15 18]
[13 12 15 13 13 11 10 18 15 10]

argsort函数会产生索引数组,其中索引表示的是按照升序排序后,对应位置的元素在原数组中的对应的索引位置

例如新生成的索引数组的 :

  • [0] = 8,表示这个排序后的值[0]位置的值在原数组中是第8个(下标0开始),为10
  • [1] = 1,表示为第1个,为 11
  • [2] = 2,表示为第2个,为 11

a1 = np.random.randint(10, 20, 10)
print(a1)
print(a1.argsort())
----------
[16 11 11 18 17 15 17 19 10 15]
[8 1 2 5 9 0 4 6 3 7]

lexsort表示对多个键的数组进行间接排序,也是返回一个索引数组。

2.3.2 去重与重复函数

unique函数的作用是去掉重复的元素

a1 = np.random.randint(10, 20, 10)
print(a1)
print(np.unique(a1))
---------
[15 13 18 14 15 15 12 17 18 16]
[12 13 14 15 16 17 18]

unique可以指定参数

  • return_index:是否返回唯一元素的索引
  • return_inverse:是否返回用索引重建的数组
  • return_counts:是否返回唯一数组中元素出现的次数
a1 = np.random.randint(10, 20, 10)
print(a1)
print(np.unique(a1, return_index=True))   # 返回唯一元素的索引值
print(np.unique(a1, return_inverse=True))# 使用唯一索引重建数组
print(np.unique(a1, return_counts=True)) # 统计唯一数组的元素出现的次数
----------
[10 13 15 19 10 15 15 14 13 17]
(array([10, 13, 14, 15, 17, 19]), array([0, 1, 7, 2, 9, 3], dtype=int64))
(array([10, 13, 14, 15, 17, 19]), array([0, 1, 3, 5, 0, 3, 3, 2, 1, 4], dtype=int64))
(array([10, 13, 14, 15, 17, 19]), array([2, 2, 1, 3, 1, 1], dtype=int64))

tile用于重复数组的值

tile(A, reps)

A:表示需要重复的数组

reps:重复的次数

如下,我们把5*2的数组重复了三次,让他变成了 5 * 6的

a1 = np.random.randint(10, 20, (5, 2))
print(np.tile(a1, 3))
--------
[[14 18 14 18 14 18]
 [14 10 14 10 14 10]
 [18 17 18 17 18 17]
 [12 12 12 12 12 12]
 [19 12 19 12 19 12]]

repeat函数也是重复数组的值:

repeat(a, repeats, axis=None)

axis:为0则表示垂直(行数增加),为1表示水平(列数增加)

print(np.repeat(a1, 3, axis=1))
print(np.repeat(a1, 3, axis=0))
----------
[[16 16 16 18 18 18]
 [13 13 13 11 11 11]
 [11 11 11 13 13 13]
 [13 13 13 10 10 10]
 [11 11 11 15 15 15]]
[[16 18]
 [16 18]
 [16 18]
 [13 11]
 [13 11]
 [13 11]
 [11 13]
 [11 13]
 [11 13]
 [13 10]
 [13 10]
 [13 10]
 [11 15]
 [11 15]
 [11 15]]

2.3.3 常用统计函数

基本统计函数:

  • min ,max amax, amin:表示求得最大值和最小值
  • ptp:求最值差(最大值与最小值之差)
  • percentile:求分位数

表示数据波动函数:

  • median:求中位数

  • mean:求算数平均值

  • average:求加权平均值

  • var:方差

  • std:标准方差

数据分布密度函数:

  • histogram
  • bincout

数据相关性函数:判断两个数组是否具有一定的一致性

  • cov:协方差
  • corrcoef:协方差系数

求值函数:

  • sum:求数组所有元素之和
  • cumsum:求数组到某位置的累加和
  • prod:所有元素之积
  • cumprod:数组到某位置的累乘值

http://www.kler.cn/a/1550.html

相关文章:

  • 缓存-Redis-常见问题-缓存击穿-永不过期+逻辑过期(全面 易理解)
  • IWOA-GRU和GRU时间序列预测(改进的鲸鱼算法优化门控循环单元)
  • 【HTML+CSS+JS+VUE】web前端教程-2-HTML5介绍和基础骨架
  • 【网络安全 | 漏洞挖掘】通过监控调试模式实现价值$15k的RCE
  • C语言基本知识复习浓缩版:标识符、函数、进制、数据类型
  • 详细讲一下什么是闭包,为什么会产生闭包,闭包会导致什么,闭包可以帮助我们在开发中干什么
  • 什么是Vue
  • 安卓笔记-加油-奥利给!
  • 蚂蚁一面面试经历
  • 线性筛素数
  • Vue全新一代状态管理库 Pinia【一篇通】
  • (数据结构)堆
  • Linux:C语言实现面向接口编程
  • 【Linux】写一个基础的bash
  • 文法和语言的基本知识
  • 2023前端面试题(硬货-持续更新)
  • 怎样在外网登录访问CRM管理系统?
  • 【Linux】进程的基础概念 进程的相关操作 进程的状态
  • oracle和mysql的区别
  • 【Vue3】利用vite创建vue3项目
  • (算法基础)Bellman-ford算法
  • vue后台管理系统——添加i18n国际化功能——技能提升
  • #D. 竞选班长
  • Linux中的标准IO【下】
  • CSDN-猜年龄、纸牌三角形、排他平方数
  • GEE:计算1990-2021年的指数最大值和最小值,并根据最大最小值对每一副影像归一化