当前位置: 首页 > article >正文

10. Mysql 分组或汇总查询

Mysql 函数参考和扩展:Mysql 常用函数和基础查询、 Mysql 官网

Mysql 语法执行顺序如下,一定要清楚!!!运算符相关,可前往 Mysql 基础语法和执行顺序扩展。

(8) select (9) distinct (11)<columns_name list>
(1) from <left_table>
(3) <join_type> join <right_table>
(2) on <join_condition>
(4) where <where_condition>
(5) group by <group_by columns_name list>
(6) with <rollup>
(7) having <having_condition>
(10) order by <order_by columns_name list>
(12) limit <[offset] rows>
;

1. 数据准备

这里有一张一年级一班的成绩得分表。

create table sql_test1.student_subject_scroe
(
    student_id varchar(255) comment '学生编号',
    subject    varchar(255) comment '课程名称',
    score      int comment '分数'
);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('01', 'english', 89);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('01', 'math', null);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('01', 'china', 97);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('02', 'english', 87);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('02', 'math', 53);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('02', 'china', 96);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('03', 'english', 87);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('03', 'math', 53);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('03', 'china', 96);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('04', 'english', 84);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('04', 'math', 52);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('04', 'china', 96);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('05', 'english', 74);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('05', 'math', 47);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('05', 'china', 92);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('06', 'english', 73);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('06', 'math', 40);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('06', 'china', 90);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('07', 'english', 73);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('07', 'math', 40);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('07', 'china', 90);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('08', 'english', 73);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('08', 'math', 40);
insert into sql_test1.student_subject_scroe (student_id, subject, score) values ('08', 'china', 90);

2. 汇总查询

输入的是一组数据的集合,输出的是单个值。

常用的聚合函数如下:

  • count([distinct] expr):返回expr的记录数。
  • sum(expr):返回expr的汇总值。
  • avg(expr):返回expr的平均值。
  • std(expr):返回expr的标准差。
  • max(expr):返回expr的最大值。
  • min(expr):返回expr的最小值。
  • group_concat([distinct] expr …):返回一串字符串。

统计表数据总量、学生数、有效数据数量和考试科目。

# 统计一年级一班成绩得分表,总记录数、学生人数、有效得分记录数和考试科目
select count(*)                                                      total_records,
       count(distinct student_id)                                    s_cnt,
       count(score)                                                  valid_cnt,
       group_concat(distinct subject order by subject separator '、') subjects
from sql_test1.student_subject_scroe;
+---------------+-------+-----------+------------------------+
| total_records | s_cnt | valid_cnt | subjects               |
+---------------+-------+-----------+------------------------+
|            24 |     8 |        23 | china、english、math   |
+---------------+-------+-----------+------------------------+

  • count(*):返回表中数据总量;
  • count(1):与COUNT(*)效果相同,因为它只是在每一行中都返回一个非空的值;
  • count(字段):返回字段非空值的行数;

count(*)会统计值为 NULL 的行,而count(字段)不会统计此列为 NULL 值的行。

执行效率顺序:count(*)=count(1) >count(字段)

只适用于数值类型的函数有:avg()、sum()、std();

# 查看一年级一班语文平均分,avg = sum/count
select avg(score)                              china_avg_score,
       sum(score) / count(distinct student_id) china_avg_score2,
       std(score)                              std_score
from sql_test1.student_subject_scroe
where subject = 'china';
+-----------------+------------------+--------------------+
| china_avg_score | china_avg_score2 | std_score          |
+-----------------+------------------+--------------------+
|         93.3750 |          93.3750 | 2.9553976043842236 |
+-----------------+------------------+--------------------+

3. 分组查询

SELECT中出现的非汇总聚合的字段必须声明在GROUP BY 中。

查看一年级一班各学科数据详情。

select subject,
       count(score)                                          valid_cnt,
       avg(score)                                            avg_score,
       sum(score) / count(score)                             avg_score2,
       std(score)                                            std_score,
       min(score)                                            min_score,
       max(score)                                            max_score,
       group_concat(score order by score desc separator '、') score_str
from sql_test1.student_subject_scroe
group by subject;
+---------+-----------+-----------+------------+--------------------+-----------+-----------+---------------------------------------+
| subject | valid_cnt | avg_score | avg_score2 | std_score          | min_score | max_score | score_str                             |
+---------+-----------+-----------+------------+--------------------+-----------+-----------+---------------------------------------+
| china   |         8 |   93.3750 |    93.3750 | 2.9553976043842236 |        90 |        97 | 9796969692909090        |
| english |         8 |   80.0000 |    80.0000 | 6.8738635424337655 |        73 |        89 | 8987878474737373        |
| math    |         7 |   46.4286 |    46.4286 |  5.876275371772324 |        40 |        53 | 53535247404040            |
+---------+-----------+-----------+------------+--------------------+-----------+-----------+---------------------------------------+

查看一年级一班学科平均分低于60的学科数据详情

select subject,
       count(score)                                          valid_cnt,
       avg(score)                                            avg_score,
       sum(score) / count(score)                             avg_score2,
       std(score)                                            std_score,
       min(score)                                            min_score,
       max(score)                                            max_score,
       group_concat(score order by score desc separator '、') score_str
from sql_test1.student_subject_scroe
where score is not null
group by subject
having avg(score) < 60;
+---------+-----------+-----------+------------+-------------------+-----------+-----------+----------------------------------+
| subject | valid_cnt | avg_score | avg_score2 | std_score         | min_score | max_score | score_str                        |
+---------+-----------+-----------+------------+-------------------+-----------+-----------+----------------------------------+
| math    |         7 |   46.4286 |    46.4286 | 5.876275371772324 |        40 |        53 | 53535247404040       |
+---------+-----------+-----------+------------+-------------------+-----------+-----------+----------------------------------+

WHEREHAVING的区别:

  • WHERE用于在执行查询之前对行进行筛选,而HAVING用于对查询结果进行分组后的筛选。
  • WHERE可以应用于单个表或多个表的连接查询,而HAVING必须与GROUP BY一起使用。
  • WHERE可以使用各种条件表达式进行筛选,而HAVING可以使用聚合函数和条件表达式对分组后的结果进行筛选。

http://www.kler.cn/a/155859.html

相关文章:

  • kafka消费数据太慢了,给优化下
  • Rust学习(二):rust基础语法Ⅰ
  • 基于matlab的CNN食物识别分类系统,matlab深度学习分类,训练+数据集+界面
  • Qt 编写插件plugin,支持接口定义信号
  • 网络安全-Linux基础(bash脚本)
  • Chromium 中sqlite数据库操作演示c++
  • “Install Js dependencies failed“JS SDK安装失败【Bug已解决-鸿蒙开发】
  • ADC欠采样以及应用案例
  • PhotoZoom 2024中文版全新版本震撼来袭!PhotoZoom 8怎么使用
  • 半导体工艺发展概述
  • 常用PHP数学函数 学习资料
  • 【hacker送书活动第7期】Python网络爬虫入门到实战
  • Xshell全局去除提示音
  • ELK高级搜索,深度详解ElasticStack技术栈-上篇
  • 创投课程研报专题课 | 如何写出高质量研报
  • 读书笔记:《Effective Modern C++(C++14)》
  • Java基本数据类型详解
  • 利用 LD_PRELOAD劫持动态链接库,绕过 disable_function
  • 开源vs闭源,大模型的未来在哪一边?
  • Prime 1.0
  • 【异常】捕获线程池执行任务时产生的异常
  • Hdoop学习笔记(HDP)-Part.03 资源规划
  • 微服务详细介绍(什么是微服务)
  • go并发编程(中)
  • 【计网 面向连接的传输TCP】 中科大笔记 (十 二)
  • 每日一题:LeetCode-209. 长度最小的子数组(滑动窗口)