当前位置: 首页 > article >正文

Apache Hudi初探(二)(与spark的结合)

背景

目前hudi的与spark的集合还是基于spark datasource V1来的,这一点可以查看hudi的source实现就可以知道:

class DefaultSource extends RelationProvider
  with SchemaRelationProvider
  with CreatableRelationProvider
  with DataSourceRegister
  with StreamSinkProvider
  with StreamSourceProvider
  with SparkAdapterSupport
  with Serializable {

闲说杂谈

我们先从hudi的写数据说起(毕竟没有写哪来的读),对应的流程:

createRelation
     ||
     \/
HoodieSparkSqlWriter.write

具体的代码

继续上一次Apache Hudi初探(与spark的结合)的代码:

      handleSaveModes(sqlContext.sparkSession, mode, basePath, tableConfig, tblName, operation, fs)
      val partitionColumns = SparkKeyGenUtils.getPartitionColumns(keyGenerator, toProperties
      (parameters))
      val tableMetaClient = if (tableExists) {
        HoodieTableMetaClient.builder
          .setConf(sparkContext.hadoopConfiguration)
          .setBasePath(path)
          .build()
      } else {
        ...
      }
      val commitActionType = CommitUtils.getCommitActionType(operation, tableConfig.getTableType)
      if (hoodieConfig.getBoolean(ENABLE_ROW_WRITER) &&
       operation == WriteOperationType.BULK_INSERT) {
       val (success, commitTime: common.util.Option[String]) = bulkInsertAsRow(sqlContext, parameters, df, tblName,
         basePath, path, instantTime, partitionColumns, tableConfig.isTablePartitioned)
       return (success, commitTime, common.util.Option.empty(), common.util.Option.empty(), hoodieWriteClient.orNull, tableConfig)
      }
  • handleSaveModes 是对spark SaveMode和hoodie的hoodie.datasource.write.operation配置进行校验验证
    如 如果根据现有spark.sessionState.conf.resolver配置计算出来的表名(source中配置的hoodie.table.name和tableconfig获取的hoodie.table.name)不一致则报错

  • partitionColumns 获取分区字段,一般是 “field1,field2”格式

  • val tableMetaClient =
    构造tableMetaClient,如果表存在,则复用现有的,
    如果不存在则会新建,主要的是新建目录以及初始化对应的目录结构:

    • 创建.hoodie目录
    • 创建.hoodie/.schema目录
    • 创建.hoodie/archived目录
    • 创建.hoodie/.temp目录
    • 创建.hoodie/.aux目录
    • 创建.hoodie/.aux/.bootstrap目录
    • 创建.hoodie/.aux/.bootstrap/.partitions目录
    • 创建.hoodie/.aux/.bootstrap/.fileids目录
    • 创建.hoodie/hoodie.properties文件
      并向hoodie.properties写入属性值
      最终会形成如下的文件目录机构:
        hudi_result_mor/.hoodie/.aux
        hudi_result_mor/.hoodie/.aux/.bootstrap/.partitions
        hudi_result_mor/.hoodie/.aux/.bootstrap/.fileids
        hudi_result_mor/.hoodie/.schema
        hudi_result_mor/.hoodie/.temp
        hudi_result_mor/.hoodie/archived
        hudi_result_mor/.hoodie/hoodie.properties
        hudi_result_mor/.hoodie/metadata
      
  • val commitActionType = CommitUtils.getCommitActionType
    这个决定了commit的类型,如果是COW表则是commit,如果是MOR表是deltacommit,这会在文件的后缀上有体现

  • bulkInsertAsRow
    如果同时满足“hoodie.datasource.write.row.writer.enable”(默认是true)和“hoodie.datasource.write.operation”是bulk_insert,则会按照spark原生的ROW格式写入数据,否则会有额外的转换操作

bulkInsertAsRow解析

由于bulkInsertAsRow是写入数据的重点,所以逐一分析:

    val sparkContext = sqlContext.sparkContext
    val populateMetaFields = java.lang.Boolean.parseBoolean(parameters.getOrElse(HoodieTableConfig.POPULATE_META_FIELDS.key(),
      String.valueOf(HoodieTableConfig.POPULATE_META_FIELDS.defaultValue())))
    val dropPartitionColumns = parameters.get(DataSourceWriteOptions.DROP_PARTITION_COLUMNS.key()).map(_.toBoolean)
      .getOrElse(DataSourceWriteOptions.DROP_PARTITION_COLUMNS.defaultValue())
    // register classes & schemas
    val (structName, nameSpace) = AvroConversionUtils.getAvroRecordNameAndNamespace(tblName)
    sparkContext.getConf.registerKryoClasses(
      Array(classOf[org.apache.avro.generic.GenericData],
        classOf[org.apache.avro.Schema]))
    var schema = AvroConversionUtils.convertStructTypeToAvroSchema(df.schema, structName, nameSpace)
    if (dropPartitionColumns) {
      schema = generateSchemaWithoutPartitionColumns(partitionColumns, schema)
    }
    validateSchemaForHoodieIsDeleted(schema)
    sparkContext.getConf.registerAvroSchemas(schema)
    log.info(s"Registered avro schema : ${schema.toString(true)}")
    if (parameters(INSERT_DROP_DUPS.key).toBoolean) {
      throw new HoodieException("Dropping duplicates with bulk_insert in row writer path is not supported yet")
    }
  • populateMetaFields= ,如果是True,会在每行记录中添加Hudi的元数据字段(如_hoodie_commit_time等),这在后面的bulkInsertPartitionerRows时候用到,默认是True
  • dropPartitionColumns 是否删除分区字段,默认是否,也就是会保留分区字段
  • sparkContext.getConf.registerKryoClassesGenericData和Schema使用Kyro序列化
  • var schema = AvroConversionUtils.convertStructTypeToAvroSchema 把spark sql Schema转换为Avro Schema
  • sparkContext.getConf.registerAvroSchemas 注册Avro序列化
  • “hoodie.datasource.write.insert.drop.duplicates” 不允许为True
 val params: mutable.Map[String, String] = collection.mutable.Map(parameters.toSeq: _*)
    params(HoodieWriteConfig.AVRO_SCHEMA_STRING.key) = schema.toString
    val writeConfig = DataSourceUtils.createHoodieConfig(schema.toString, path, tblName, mapAsJavaMap(params))
    val bulkInsertPartitionerRows: BulkInsertPartitioner[Dataset[Row]] = if (populateMetaFields) {
      val userDefinedBulkInsertPartitionerOpt = DataSourceUtils.createUserDefinedBulkInsertPartitionerWithRows(writeConfig)
      if (userDefinedBulkInsertPartitionerOpt.isPresent) {
        userDefinedBulkInsertPartitionerOpt.get
      } else {
        BulkInsertInternalPartitionerWithRowsFactory.get(
          writeConfig.getBulkInsertSortMode, isTablePartitioned)
      }
    } else {
      // Sort modes are not yet supported when meta fields are disabled
      new NonSortPartitionerWithRows()
    }
    val arePartitionRecordsSorted = bulkInsertPartitionerRows.arePartitionRecordsSorted()
    params(HoodieInternalConfig.BULKINSERT_ARE_PARTITIONER_RECORDS_SORTED) = arePartitionRecordsSorted.toString
    val isGlobalIndex = if (populateMetaFields) {
      SparkHoodieIndexFactory.isGlobalIndex(writeConfig)
    } else {
      false
    }

  • 注册“hoodie.avro.schema”为刚才的Avro Schema
  • val writeConfig = DataSourceUtils.createHoodieConfig
    创建hudiConfig对象,其中包括:
    • “hoodie.datasource.compaction.async.enable” 是否异步compaction,默认是true
    • 如果不是异步compaction,且满足是MOR表,则表明是同步Compaction
    • “hoodie.datasource.write.insert.drop.duplicates”如果是True(默认False),则会在插入记录的时候去重
    • 设置“hoodie.datasource.write.payload.class”,默认是“OverwriteWithLatestAvroPayload”
    • 设置“hoodie.datasource.write.precombine.field”,默认是ts字段,这个字段用在Playload的时候进行record的比较
    • 这里还会在在最后的build()步骤里设置"hoodie.index.type",如果是spark引擎,则是"SIMPLE"
  • bulkInsertPartitionerRows,默认是NonSortPartitionerWithRows,也就是原样输出,不做任何改动
  • 设置"hoodie.bulkinsert.are.partitioner.records.sorted",默认为False
  • val isGlobalIndex = 这里会根据索引类型来判断,因为默认是“SIMPLE”索引,所以是False
val hoodieDF = HoodieDatasetBulkInsertHelper.prepareForBulkInsert(df, writeConfig, bulkInsertPartitionerRows, dropPartitionColumns)

    if (HoodieSparkUtils.isSpark2) {
      hoodieDF.write.format("org.apache.hudi.internal")
        .option(DataSourceInternalWriterHelper.INSTANT_TIME_OPT_KEY, instantTime)
        .options(params)
        .mode(SaveMode.Append)
        .save()
    } else if (HoodieSparkUtils.isSpark3) {
      hoodieDF.write.format("org.apache.hudi.spark3.internal")
        .option(DataSourceInternalWriterHelper.INSTANT_TIME_OPT_KEY, instantTime)
        .option(HoodieInternalConfig.BULKINSERT_INPUT_DATA_SCHEMA_DDL.key, hoodieDF.schema.toDDL)
        .options(params)
        .mode(SaveMode.Append)
        .save()
    } else {
      throw new HoodieException("Bulk insert using row writer is not supported with current Spark version."
        + " To use row writer please switch to spark 2 or spark 3")
    }
    val syncHiveSuccess = metaSync(sqlContext.sparkSession, writeConfig, basePath, df.schema)
    (syncHiveSuccess, common.util.Option.ofNullable(instantTime))
  }
  • HoodieDatasetBulkInsertHelper.prepareForBulkInsert 这是插入数据前的准备工作

    • 如果"hoodie.populate.meta.fields"是True,则增加元数据字段:
      _hoodie_commit_time,_hoodie_commit_seqno,_hoodie_record_key,_hoodie_partition_path,_hoodie_file_name
    • “hoodie.combine.before.insert”,是否在写入存储之前,先进行数据去重处理(按照precombine的key),默认是False
      • 默认走的是,只是加上元数据字段
      • 如果是设置为True,则会引入额外的shuffle来进行去重处理
      • 如果"hoodie.datasource.write.drop.partition.columns"为True(默认是False),去掉分区字段
  • 因为这里是Spark3 所以会进入到hoodieDF.write.format(“org.apache.hudi.spark3.internal”)
    这里后续再分析


http://www.kler.cn/a/15664.html

相关文章:

  • pytorch tensor在CPU和GPU之间转换,numpy之间的转换
  • vue3点击按钮el-dialog对话框不显示问题
  • 外网访问 WebDav 服务
  • Android加载pdf
  • 3D意识(3D Awareness)浅析
  • MySQL数据库:SQL语言入门 【2】(学习笔记)
  • 用 AudioGPT 输入自然语言,可以让 ChatGPT 唱歌了?
  • 借助尾号限行 API 实现限行规则应用的设计思路分析
  • ElasticSearch创建文档以及索引文档的详细流程
  • 防火墙GRE和NAT
  • 【裸金属服务器】安装VMware ESXi
  • 项目合同管理
  • Haproxy搭建Web群集
  • python实战应用讲解-【numpy数组篇】常用函数(七)(附python示例代码)
  • Matlab高光谱遥感、数据处理与混合像元分解及典型案例
  • 带你搞懂人工智能、机器学习和深度学习!
  • Springboot +Flowable,详细解释啥叫流程实例(一)
  • 前端系列第10集-实战篇
  • Linux:网络套接字
  • 【SpringBoot系列】实现跨域的几种方式
  • 院内导航方案怎么样?什么地图可以用于医院导航系统?
  • effective c++ item35-39
  • Apache Druid中Kafka配置远程代码执行漏洞(MPS-2023-6623)
  • 工厂能耗管理系统linux嵌入式边缘网关
  • 元宇宙展厅--音乐科技展厅
  • js字符串 常用方法 并带详细讲解