Apache Hudi初探(二)(与spark的结合)
背景
目前hudi的与spark的集合还是基于spark datasource V1来的,这一点可以查看hudi的source实现就可以知道:
class DefaultSource extends RelationProvider
with SchemaRelationProvider
with CreatableRelationProvider
with DataSourceRegister
with StreamSinkProvider
with StreamSourceProvider
with SparkAdapterSupport
with Serializable {
闲说杂谈
我们先从hudi的写数据说起(毕竟没有写哪来的读),对应的流程:
createRelation
||
\/
HoodieSparkSqlWriter.write
具体的代码
继续上一次Apache Hudi初探(与spark的结合)的代码:
handleSaveModes(sqlContext.sparkSession, mode, basePath, tableConfig, tblName, operation, fs)
val partitionColumns = SparkKeyGenUtils.getPartitionColumns(keyGenerator, toProperties
(parameters))
val tableMetaClient = if (tableExists) {
HoodieTableMetaClient.builder
.setConf(sparkContext.hadoopConfiguration)
.setBasePath(path)
.build()
} else {
...
}
val commitActionType = CommitUtils.getCommitActionType(operation, tableConfig.getTableType)
if (hoodieConfig.getBoolean(ENABLE_ROW_WRITER) &&
operation == WriteOperationType.BULK_INSERT) {
val (success, commitTime: common.util.Option[String]) = bulkInsertAsRow(sqlContext, parameters, df, tblName,
basePath, path, instantTime, partitionColumns, tableConfig.isTablePartitioned)
return (success, commitTime, common.util.Option.empty(), common.util.Option.empty(), hoodieWriteClient.orNull, tableConfig)
}
-
handleSaveModes 是对spark SaveMode和hoodie的hoodie.datasource.write.operation配置进行校验验证
如 如果根据现有spark.sessionState.conf.resolver配置计算出来的表名(source中配置的hoodie.table.name和tableconfig获取的hoodie.table.name)不一致则报错 -
partitionColumns 获取分区字段,一般是 “field1,field2”格式
-
val tableMetaClient =
构造tableMetaClient,如果表存在,则复用现有的,
如果不存在则会新建,主要的是新建目录以及初始化对应的目录结构:- 创建.hoodie目录
- 创建.hoodie/.schema目录
- 创建.hoodie/archived目录
- 创建.hoodie/.temp目录
- 创建.hoodie/.aux目录
- 创建.hoodie/.aux/.bootstrap目录
- 创建.hoodie/.aux/.bootstrap/.partitions目录
- 创建.hoodie/.aux/.bootstrap/.fileids目录
- 创建.hoodie/hoodie.properties文件
并向hoodie.properties写入属性值
最终会形成如下的文件目录机构:hudi_result_mor/.hoodie/.aux hudi_result_mor/.hoodie/.aux/.bootstrap/.partitions hudi_result_mor/.hoodie/.aux/.bootstrap/.fileids hudi_result_mor/.hoodie/.schema hudi_result_mor/.hoodie/.temp hudi_result_mor/.hoodie/archived hudi_result_mor/.hoodie/hoodie.properties hudi_result_mor/.hoodie/metadata
-
val commitActionType = CommitUtils.getCommitActionType
这个决定了commit的类型,如果是COW表则是commit,如果是MOR表是deltacommit,这会在文件的后缀上有体现 -
bulkInsertAsRow
如果同时满足“hoodie.datasource.write.row.writer.enable”(默认是true)和“hoodie.datasource.write.operation”是bulk_insert,则会按照spark原生的ROW格式写入数据,否则会有额外的转换操作
bulkInsertAsRow解析
由于bulkInsertAsRow是写入数据的重点,所以逐一分析:
val sparkContext = sqlContext.sparkContext
val populateMetaFields = java.lang.Boolean.parseBoolean(parameters.getOrElse(HoodieTableConfig.POPULATE_META_FIELDS.key(),
String.valueOf(HoodieTableConfig.POPULATE_META_FIELDS.defaultValue())))
val dropPartitionColumns = parameters.get(DataSourceWriteOptions.DROP_PARTITION_COLUMNS.key()).map(_.toBoolean)
.getOrElse(DataSourceWriteOptions.DROP_PARTITION_COLUMNS.defaultValue())
// register classes & schemas
val (structName, nameSpace) = AvroConversionUtils.getAvroRecordNameAndNamespace(tblName)
sparkContext.getConf.registerKryoClasses(
Array(classOf[org.apache.avro.generic.GenericData],
classOf[org.apache.avro.Schema]))
var schema = AvroConversionUtils.convertStructTypeToAvroSchema(df.schema, structName, nameSpace)
if (dropPartitionColumns) {
schema = generateSchemaWithoutPartitionColumns(partitionColumns, schema)
}
validateSchemaForHoodieIsDeleted(schema)
sparkContext.getConf.registerAvroSchemas(schema)
log.info(s"Registered avro schema : ${schema.toString(true)}")
if (parameters(INSERT_DROP_DUPS.key).toBoolean) {
throw new HoodieException("Dropping duplicates with bulk_insert in row writer path is not supported yet")
}
- populateMetaFields= ,如果是True,会在每行记录中添加Hudi的元数据字段(如_hoodie_commit_time等),这在后面的bulkInsertPartitionerRows时候用到,默认是True
- dropPartitionColumns 是否删除分区字段,默认是否,也就是会保留分区字段
- sparkContext.getConf.registerKryoClasses 给GenericData和Schema使用Kyro序列化
- var schema = AvroConversionUtils.convertStructTypeToAvroSchema 把spark sql Schema转换为Avro Schema
- sparkContext.getConf.registerAvroSchemas 注册Avro序列化
- “hoodie.datasource.write.insert.drop.duplicates” 不允许为True
val params: mutable.Map[String, String] = collection.mutable.Map(parameters.toSeq: _*)
params(HoodieWriteConfig.AVRO_SCHEMA_STRING.key) = schema.toString
val writeConfig = DataSourceUtils.createHoodieConfig(schema.toString, path, tblName, mapAsJavaMap(params))
val bulkInsertPartitionerRows: BulkInsertPartitioner[Dataset[Row]] = if (populateMetaFields) {
val userDefinedBulkInsertPartitionerOpt = DataSourceUtils.createUserDefinedBulkInsertPartitionerWithRows(writeConfig)
if (userDefinedBulkInsertPartitionerOpt.isPresent) {
userDefinedBulkInsertPartitionerOpt.get
} else {
BulkInsertInternalPartitionerWithRowsFactory.get(
writeConfig.getBulkInsertSortMode, isTablePartitioned)
}
} else {
// Sort modes are not yet supported when meta fields are disabled
new NonSortPartitionerWithRows()
}
val arePartitionRecordsSorted = bulkInsertPartitionerRows.arePartitionRecordsSorted()
params(HoodieInternalConfig.BULKINSERT_ARE_PARTITIONER_RECORDS_SORTED) = arePartitionRecordsSorted.toString
val isGlobalIndex = if (populateMetaFields) {
SparkHoodieIndexFactory.isGlobalIndex(writeConfig)
} else {
false
}
- 注册“hoodie.avro.schema”为刚才的Avro Schema
- val writeConfig = DataSourceUtils.createHoodieConfig
创建hudiConfig对象,其中包括:- “hoodie.datasource.compaction.async.enable” 是否异步compaction,默认是true
- 如果不是异步compaction,且满足是MOR表,则表明是同步Compaction
- “hoodie.datasource.write.insert.drop.duplicates”如果是True(默认False),则会在插入记录的时候去重
- 设置“hoodie.datasource.write.payload.class”,默认是“OverwriteWithLatestAvroPayload”
- 设置“hoodie.datasource.write.precombine.field”,默认是ts字段,这个字段用在Playload的时候进行record的比较
- 这里还会在在最后的build()步骤里设置"hoodie.index.type",如果是spark引擎,则是"SIMPLE"
- bulkInsertPartitionerRows,默认是NonSortPartitionerWithRows,也就是原样输出,不做任何改动
- 设置"hoodie.bulkinsert.are.partitioner.records.sorted",默认为False
- val isGlobalIndex = 这里会根据索引类型来判断,因为默认是“SIMPLE”索引,所以是False
val hoodieDF = HoodieDatasetBulkInsertHelper.prepareForBulkInsert(df, writeConfig, bulkInsertPartitionerRows, dropPartitionColumns)
if (HoodieSparkUtils.isSpark2) {
hoodieDF.write.format("org.apache.hudi.internal")
.option(DataSourceInternalWriterHelper.INSTANT_TIME_OPT_KEY, instantTime)
.options(params)
.mode(SaveMode.Append)
.save()
} else if (HoodieSparkUtils.isSpark3) {
hoodieDF.write.format("org.apache.hudi.spark3.internal")
.option(DataSourceInternalWriterHelper.INSTANT_TIME_OPT_KEY, instantTime)
.option(HoodieInternalConfig.BULKINSERT_INPUT_DATA_SCHEMA_DDL.key, hoodieDF.schema.toDDL)
.options(params)
.mode(SaveMode.Append)
.save()
} else {
throw new HoodieException("Bulk insert using row writer is not supported with current Spark version."
+ " To use row writer please switch to spark 2 or spark 3")
}
val syncHiveSuccess = metaSync(sqlContext.sparkSession, writeConfig, basePath, df.schema)
(syncHiveSuccess, common.util.Option.ofNullable(instantTime))
}
-
HoodieDatasetBulkInsertHelper.prepareForBulkInsert 这是插入数据前的准备工作
- 如果"hoodie.populate.meta.fields"是True,则增加元数据字段:
_hoodie_commit_time,_hoodie_commit_seqno,_hoodie_record_key,_hoodie_partition_path,_hoodie_file_name - “hoodie.combine.before.insert”,是否在写入存储之前,先进行数据去重处理(按照precombine的key),默认是False
- 默认走的是,只是加上元数据字段
- 如果是设置为True,则会引入额外的shuffle来进行去重处理
- 如果"hoodie.datasource.write.drop.partition.columns"为True(默认是False),去掉分区字段
- 如果"hoodie.populate.meta.fields"是True,则增加元数据字段:
-
因为这里是Spark3 所以会进入到hoodieDF.write.format(“org.apache.hudi.spark3.internal”)
这里后续再分析