当前位置: 首页 > article >正文

强化学习Markov重要公式推导过程

Markov决策过程(Markov Decision Process,MDP)

Markov过程是一种用于描述决策问题的数学框架,是强化学习的基础。MDP中,决策者面对一系列的状态和动作,每个状态下采取不同的动作会获得不同的奖励,决策者的目标是制定一种策略,使得长期累积的奖励最大化。

MDP具有以下特点:

  • 状态具有马尔可夫性质,即当前状态包含了过去所有状态的信息,未来状态只与当前状态相关,与过去状态无关;
  • 决策者在每个状态下采取的动作会影响下一时刻的状态转移;
  • 在每个状态下采取的动作会获得一个即时奖励,目标是最大化长期累积奖励。

MDP可以用五元组 ( S , A , p , r , γ ) (\mathcal{S}, \mathcal{A}, p, r, \gamma) (S,A,p,r,γ) 来表示,其中:

  • S \mathcal{S} S 是状态集合;
  • A \mathcal{A} A 是动作集合;
  • p ( s ′ ∣ s , a ) p(s'|s,a) p(ss,a) 表示在状态 s s s 采取动作 a a a 后转移到状态 s ′ s' s 的概率;
  • r ( s , a ) r(s,a) r(s,a) 表示在状态 s s s 采取动作 a a a 后获得的即时奖励;
  • γ ∈ [ 0 , 1 ] \gamma \in [0,1] γ[0,1] 是折扣因子,用于平衡当前奖励和未来奖励的重要性。

定义在时间 t \mathrm{t} t, 从状态 s t = s \mathrm{s}_{\mathrm{t}}=\mathrm{s} st=s 和动作 A t = a \mathrm{A}_{\mathrm{t}}=\mathrm{a} At=a 跳转到下一状态 S t + 1 = s ′ S_{t+1}=s^{\prime} St+1=s 和奖励 R t + 1 = r R_{t+1}=r Rt+1=r 的概率为:
Pr ⁡ [ S t + 1 = s ′ , R t + 1 = r ∣ S t = s , A t = a ] \operatorname{Pr}\left[S_{t+1}=s^{\prime}, R_{t+1}=r \mid S_t=s, A_t=a\right] Pr[St+1=s,Rt+1=rSt=s,At=a]

在MDP中,决策者需要制定一种策略 π : S → A \pi: \mathcal{S} \rightarrow \mathcal{A} π:SA,将每个状态映射到相应的动作。根据策略,可以计算出每个状态的状态值函数 V π ( s ) V^\pi(s) Vπ(s) 和动作值函数 Q π ( s , a ) Q^\pi(s,a) Qπ(s,a),用于评估策略的好坏。同时,还可以使用值迭代、策略迭代等算法,来寻找最优策略,使得长期累积奖励最大化。

对于有限 Markov决策过程, 可以定义函数 p : S × R × S × A → [ 0 , 1 ] p: \mathcal{S} \times \mathcal{R} \times \mathcal{S} \times \mathcal{A} \rightarrow[0,1] p:S×R×S×A[0,1] 为 Markov决策过程的动力 (dynamics):
p ( s ′ , r ∣ s , a ) = Pr ⁡ [ S t + 1 = s ′ , R t + 1 = r ∣ S t = s , A t = a ] \mathrm{p}\left(\mathrm{s}^{\prime}, \mathrm{r} \mid \mathrm{s}, \mathrm{a}\right)=\operatorname{Pr}\left[\mathrm{S}_{\mathrm{t}+1}=\mathrm{s}^{\prime} \quad, \mathrm{R}_{\mathrm{t}+1}=\mathrm{r} \mid \mathrm{S}_{\mathrm{t}}=\mathrm{s}, \mathrm{A}_{\mathrm{t}}=\mathrm{a}\right] p(s,rs,a)=Pr[St+1=s,Rt+1=rSt=s,At=a]
p函数中间的坚线 “ ∣ \mid ”取材于条件概率中间的坚线。

利用动力的定义, 可以得到以下其他导出量。

  • 状态转移概率(1.1):
    p ( s ′ ∣ s , a ) = Pr ⁡ [ S t + 1 = s ′ ∣ S , = s , A = a ] = ∑ r ∈ R p ( s ′ , r ∣ s , a ) , s ∈ S , a ∈ A , s ′ ∈ S p\left(s^{\prime} \mid s, a\right)=\operatorname{Pr}\left[S_{t+1}=s^{\prime} \mid S,=s, A=a\right]=\sum_{r \in \mathbb{R}} p\left(s^{\prime}, r \mid s, a\right), \quad s \in \mathcal{S}, a \in \mathcal{A}, s^{\prime} \in \mathcal{S} p(ss,a)=Pr[St+1=sS,=s,A=a]=rRp(s,rs,a),sS,aA,sS

  • 给定 “状态 - 动作” 的期望奖励(1.2):
    r ( s , a ) = E [ R t + 1 ∣ S t = s , A t = a ] = ∑ r ∈ R r ∑ s ′ ∈ S p ( s ′ , r ∣ s , a ) , s ∈ S , a ∈ A r(s, a)=\mathrm{E}\left[R_{t+1} \mid S_{t}=s, A_{t}=a\right]=\sum_{r \in \mathbb{R}} r \sum_{s^{\prime} \in S} p\left(s^{\prime}, r \mid s, a\right), \quad s \in \mathcal{S}, a \in \mathcal{A} r(s,a)=E[Rt+1St=s,At=a]=rRrsSp(s,rs,a),sS,aA

  • 给定 “状态 - 动作 -下一状态” 的期望奖励(1.3):
    r ( s , a , s ′ ) = E [ R t + 1 ∣ S t = s , A t = a , S t + 1 = s ′ ] = ∑ r ∈ R r p ( s ′ , r ∣ s , a ) p ( s ′ ∣ s , a ) , s ∈ S , a ∈ A , s ′ ∈ S r\left(s, a, s^{\prime}\right)=\mathrm{E}\left[R_{t+1} \mid S_{t}=s, A_{t}=a, S_{t+1}=s^{\prime}\right]= \sum_{r \in \mathbb{R} } r \frac{p\left(s^{\prime}, r \mid s, a\right)}{p\left(s^{\prime} \mid s, a\right)}, \quad s \in \mathcal{S}, a \in \mathcal{A}, s^{\prime} \in \mathcal{S} r(s,a,s)=E[Rt+1St=s,At=a,St+1=s]=rRrp(ss,a)p(s,rs,a),sS,aA,sS

公式(1.3)推导过程 我们可以使用条件概率的公式来推导 r ( s , a , s ′ ) r(s,a,s') r(s,a,s) 的公式。根据条件概率的定义,有: E [ R t + 1 ∣ S t = s , A t = a , S t + 1 = s ′ ] = ∑ r r ⋅ Pr ⁡ ( R t + 1 = r ∣ S t = s , A t = a , S t + 1 = s ′ ) \mathrm{E}\left[R_{t+1} \mid S_{t}=s, A_{t}=a, S_{t+1}=s^{\prime}\right]=\sum_{r} r \cdot \operatorname{Pr}\left(R_{t+1}=r \mid S_{t}=s, A_{t}=a, S_{t+1}=s^{\prime}\right) E[Rt+1St=s,At=a,St+1=s]=rrPr(Rt+1=rSt=s,At=a,St+1=s)

利用条件概率公式的两种形式
P ( A , B ) = P ( A ∣ B ) ⋅ P ( B ) P(A , B)=P(A \mid B) \cdot P(B) P(AB)=P(AB)P(B)
P ( A ∣ B ) ⋅ P ( B ) = P ( A , B ) P(A \mid B) \cdot P(B)=P(A , B) P(AB)P(B)=P(AB)

对下面的概率公式进行转化
Pr ⁡ ( R t + 1 = r ∣ S t = S , A t = a , S t + 1 = s ′ ) = Pr ⁡ ( R t + 1 = r , S t = s , A t = a , S t + 1 = s ′ ) Pr ⁡ ( S t = s , A t = a , S t + 1 = s ′ ) = Pr ⁡ ( R t + 1 ⁡ = r , S t + 1 = s ′ ∣ S t = s , A t = a ) ⋅ Pr ⁡ ( S t = s , A t = a ) Pr ⁡ ( S t + 1 = s ′ ∣ S t = s , A t = a ) ⋅ Pr ⁡ ( S t = s , A t = a ) = Pr ⁡ ( R ⁡ t + 1 = r , S t + 1 = s ′ ∣ S t = s , A t = a ) Pr ⁡ ( S t + 1 = s ′ ∣ S t = s , A t = a ) \begin{aligned} & \operatorname{Pr}\left(R_{t+1}=r \mid S_t=S, A_t=a, S_{t+1}=s^{\prime}\right)\\ & =\frac{\operatorname{Pr}\left(R_{t+1}=r, S_t=s, A_t=a, S_{t+1}=s^{\prime}\right)}{\operatorname{Pr}\left(S_t=s, A_t=a, S_{t+1}=s^{\prime}\right)} \\ & =\frac{\operatorname{Pr}\left(\operatorname{R_{t+1}} =r, S_{t+1}=s^{\prime} \mid S_t=s, A_t=a\right) \cdot \operatorname{Pr}\left(S_t=s, A_t=a\right)}{\operatorname{Pr}\left(S_{t+1}=s^{\prime} \mid S_t=s, A_t=a\right) \cdot \operatorname{Pr}\left(S_t=s, A_t=a\right)} \\ & =\frac{\operatorname{Pr}\left(\operatorname{R}_{t+1}=r, S_{t+1}=s^{\prime} \mid S_t=s, A_t=a\right)}{\operatorname{Pr}\left(S_{t+1}=s^{\prime} \mid S_t=s, A_t=a\right)} \end{aligned} Pr(Rt+1=rSt=S,At=a,St+1=s)=Pr(St=s,At=a,St+1=s)Pr(Rt+1=r,St=s,At=a,St+1=s)=Pr(St+1=sSt=s,At=a)Pr(St=s,At=a)Pr(Rt+1=r,St+1=sSt=s,At=a)Pr(St=s,At=a)=Pr(St+1=sSt=s,At=a)Pr(Rt+1=r,St+1=sSt=s,At=a)
而根据贝叶斯公式,我们可以将上式中的条件概率转换为联合概率和边缘概率的形式,即:
Pr ⁡ ( R t + 1 = r ∣ S t = s , A t = a , S t + 1 = s ′ ) = Pr ⁡ ( S t + 1 = s ′ , R t + 1 = r ∣ S t = s , A t = a ) Pr ⁡ ( S t + 1 = s ′ ∣ S t = s , A t = a ) \operatorname{Pr}\left(R_{t+1}=r \mid S_{t}=s, A_{t}=a, S_{t+1}=s^{\prime}\right)=\frac{\operatorname{Pr}\left(S_{t+1}=s^{\prime}, R_{t+1}=r \mid S_{t}=s, A_{t}=a\right)}{\operatorname{Pr}\left(S_{t+1}=s^{\prime} \mid S_{t}=s, A_{t}=a\right)} Pr(Rt+1=rSt=s,At=a,St+1=s)=Pr(St+1=sSt=s,At=a)Pr(St+1=s,Rt+1=rSt=s,At=a) 将上式代入前面的式子中,得到: E [ R t + 1 ∣ S t = s , A t = a , S t + 1 = s ′ ] = ∑ r r ⋅ Pr ⁡ ( S t + 1 = s ′ , R t + 1 = r ∣ S t = s , A t = a ) Pr ⁡ ( S t + 1 = s ′ ∣ S t = s , A t = a ) \mathrm{E}\left[R_{t+1} \mid S_{t}=s, A_{t}=a, S_{t+1}=s^{\prime}\right]=\sum_{r} r \cdot \frac{\operatorname{Pr}\left(S_{t+1}=s^{\prime}, R_{t+1}=r \mid S_{t}=s, A_{t}=a\right)}{\operatorname{Pr}\left(S_{t+1}=s^{\prime} \mid S_{t}=s, A_{t}=a\right)} E[Rt+1St=s,At=a,St+1=s]=rrPr(St+1=sSt=s,At=a)Pr(St+1=s,Rt+1=rSt=s,At=a) 根据MDP中的状态转移概率 p ( s ′ , r ∣ s , a ) p(s',r|s,a) p(s,rs,a)
和状态转移概率的定义,我们可以将上式中的条件概率表示为 p ( s ′ , r ∣ s , a ) p(s',r|s,a) p(s,rs,a) 的形式,即: Pr ⁡ ( S t + 1 = s ′ , R t + 1 = r ∣ S t = s , A t = a ) = p ( s ′ , r ∣ s , a ) \operatorname{Pr}\left(S_{t+1}=s^{\prime}, R_{t+1}=r \mid S_{t}=s, A_{t}=a\right)=p\left(s^{\prime}, r \mid s, a\right) Pr(St+1=s,Rt+1=rSt=s,At=a)=p(s,rs,a)
同样地,根据MDP中的状态转移概率 p ( s ′ ∣ s , a ) p(s'|s,a) p(ss,a) 和状态转移概率的定义,我们可以将上式中的边缘概率表示为 p ( s ′ ∣ s , a ) p(s'|s,a) p(ss,a)
的形式,即: Pr ⁡ ( S t + 1 = s ′ ∣ S t = s , A t = a ) = p ( s ′ ∣ s , a ) \operatorname{Pr}\left(S_{t+1}=s^{\prime} \mid S_{t}=s, A_{t}=a\right)=p\left(s^{\prime} \mid s, a\right) Pr(St+1=sSt=s,At=a)=p(ss,a)
将上面两个式子代入前面的式子中,得到:
E [ R t + 1 ∣ S t = s , A t = a , S t + 1 = s ′ ] = ∑ r r ⋅ p ( s ′ , r ∣ s , a ) p ( s ′ ∣ s , a ) , s ∈ S , a ∈ A , s ′ ∈ S \mathrm{E}\left[R_{t+1} \mid S_{t}=s, A_{t}=a, S_{t+1}=s^{\prime}\right]=\sum_{r} r \cdot \frac{p\left(s^{\prime}, r \mid s, a\right)}{p\left(s^{\prime} \mid s, a\right)}, \quad s \in \mathcal{S}, a \in \mathcal{A}, s^{\prime} \in \mathcal{S} E[Rt+1St=s,At=a,St+1=s]=rrp(ss,a)p(s,rs,a),sS,aA,sS 这就是
r ( s , a , s ′ ) r(s,a,s') r(s,a,s) 的公式推导过程。

回报

假设某一回合在第 T T T 步终止,则从 t ( t < T ) t(t<T) t(t<T) 以后的回报 G t G_t Gt 定义为未来奖励和:

G t = R t + 1 + R t + 2 + ⋯ + R T G_t = R_{t+1} + R_{t+2} + \cdots + R_T Gt=Rt+1+Rt+2++RT

引入折扣因子 γ ∈ [ 0 , 1 ] \gamma \in [0,1] γ[0,1],则回报 G t G_t Gt 可以表示为:

G t = R t + 1 + γ R t + 2 + γ 2 R t + 3 + ⋯ = ∑ τ = 0 + ∞ γ τ R t + τ + 1 G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots = \sum_{\tau =0}^{+\infty} \gamma^\tau R_{t+\tau+1} Gt=Rt+1+γRt+2+γ2Rt+3+=τ=0+γτRt+τ+1

其中, R t R_t Rt 表示第 t t t 步的奖励, γ \gamma γ 表示折扣因子, t t t 表示当前步数。

策略

定义策略(policy)为从状态到动作的转移概率
π ( a ∣ s ) = P r [ A t = a ∣ S t = s ] , s ∈ S , a ∈ A \pi(a\mid s)=Pr[A_t=a \mid S_t=s],s \in S,a \in A π(as)=Pr[At=aSt=s],sS,aA

价值函数

基于回报的定义,可以进一步定义价值函数 (value function)。对于给定的策略 π \pi π, 可以定义以下价值函数。

  • 状态价值函数 (state value function): 状态价值函数 v π ( s ) \mathrm{v}_\pi(\mathrm{s}) vπ(s) 表示从状态的开始采用策略 π \pi π 的预期回报。如下式所示:
    v π ( s ) = E π [ G t ∣ S t = s ] \mathrm{v}_{\mathrm{\pi}}(\mathrm{s})=\mathrm{E}_{\mathrm{\pi}}\left[\mathrm{G}_{\mathrm{t}} \mid \mathrm{S}_{\mathrm{t}}=\mathrm{s}\right] vπ(s)=Eπ[GtSt=s]
  • 动作价值函数 (action value function):动作价值函数 q π (   s , a ) \mathrm{q}_{\pi}(\mathrm{~s}, \mathrm{a}) qπ( s,a) 表示在状态 s \mathrm{s} s 采取动作 a \mathrm{a} a 后,采用策略 π \pi π 的预期回报。如下式所示:
    q π ( s , a ) = E π [ G t ∣ S t = s , A t = a ] \mathrm{q}_\pi(\mathrm{s}, \mathrm{a})=\mathrm{E}_\pi\left[\mathrm{G}_{\mathrm{t}} \mid \mathrm{S}_{\mathrm{t}}=\mathrm{s}, \mathrm{A}_{\mathrm{t}}=\mathrm{a}\right] qπ(s,a)=Eπ[GtSt=s,At=a]
    终止状态 s 终止 {s}_{终止} s终止不是一个一般的状态,终止状态后没有动作。为了在数学上有统一的形式, 一般定义 v π ( s 终止  ) = 0 , q π ( s 终止  , a ) = 0 ( a ∈ A ) \mathrm{v}_\pi\left(\mathrm{s}_{\text {终止 }}\right)=0, \mathrm{q}_\pi\left(\mathrm{s}_{\text {终止 }}, \mathrm{a}\right)=0 \quad(a \in \mathcal{A}) vπ(s终止 )=0,qπ(s终止 ,a)=0(aA)

动作价值函数和状态价值函数的互相表示以及贝尔曼期望方程

  • t \mathrm{t} t 时刻的动作价值函数表示 t \mathrm{t} t 时刻的状态价值函数:
    v π ( s ) = ∑ a π ( a ∣ s ) q π ( s , a ) , s ∈ S v_\pi(s)=\sum_a \pi(a \mid s) q_{\pi} (s, a), \quad s \in S vπ(s)=aπ(as)qπ(s,a),sS
    (推导:对任一状态 s ∈ S s \in \mathcal{S} sS, 有
    v π ( s ) = E π [ G t ∣ S t = s ] = ∑ g g Pr ⁡ [ G t = g ∣ S t = s ] = ∑ g g ∑ a Pr ⁡ [ G t = g , A t = a ∣ S t = s ] (对概率部分利用条件概率公式变形,拆成两个概率乘积 = ∑ g g ∑ a Pr ⁡ [ G t = g , A t = a , S t = s ] Pr ⁡ [ S t = s ] = ∑ g g ∑ a Pr ⁡ [ G t = g ∣ A t = a , S t = s ] ⋅ Pr ⁡ [ A t = a , S t = s ] Pr ⁡ [ S t = s ] ) = ∑ g g ∑ a Pr ⁡ [ A t = a ∣ S t = s ] Pr ⁡ [ G t = g ∣ S t = s , A t = a ] = ∑ a Pr ⁡ [ A t = a ∣ S t = s ] ∑ g g Pr ⁡ [ G t = g ∣ S t = s , A t = a ] = ∑ a Pr ⁡ [ A t = a ∣ S t = s ] E π [ G t ∣ S t = s , A t = a ] = ∑ a π ( a ∣ s ) q π ( s , a ) \begin{aligned} & v_\pi(s)=\mathrm{E}_\pi \left[G_t \mid S_{t}=s\right] \\ & =\sum_g g \operatorname{Pr}\left[G_t=g \mid S_t=s\right] \\ & =\sum_g g \sum_a \operatorname{Pr}\left[G_t=g, A_t=a \mid S_t=s\right] \\ & (对概率部分利用条件概率公式变形,拆成两个概率乘积\\ &= \sum_g g \sum_a \frac{\operatorname{Pr}\left[G_t=g, A_t=a, S_t=s\right]}{\operatorname{Pr}\left[S_t=s\right]} \\ &= \sum_g g \sum_a \frac{\operatorname{Pr}\left[G_t=g \mid A_t=a, S_t=s\right] \cdot \operatorname{Pr}\left[A_t=a, S_t=s\right]}{\operatorname{Pr}\left[S_t=s\right]} \\ & )\\ & =\sum_g g \sum_a \operatorname{Pr}\left[A_t=a \mid S_t=s\right] \operatorname{Pr}\left[G_t=g \mid S_t=s, A_t=a\right] \\ & =\sum_a \operatorname{Pr}\left[A_t=a \mid S_t=s\right] \sum_g g \operatorname{Pr}\left[G_t=g \mid S_t=s, A_t=a\right] \\ & =\sum_a \operatorname{Pr}\left[A_t=a \mid S_t=s \right] \mathrm{E}_\pi \left[G_t \mid S_t=s, A_t=a\right] \\ & =\sum_a \pi(a \mid s) q_\pi (s, a) \\ & \end{aligned} vπ(s)=Eπ[GtSt=s]=ggPr[Gt=gSt=s]=ggaPr[Gt=g,At=aSt=s](对概率部分利用条件概率公式变形,拆成两个概率乘积=ggaPr[St=s]Pr[Gt=g,At=a,St=s]=ggaPr[St=s]Pr[Gt=gAt=a,St=s]Pr[At=a,St=s]=ggaPr[At=aSt=s]Pr[Gt=gSt=s,At=a]=aPr[At=aSt=s]ggPr[Gt=gSt=s,At=a]=aPr[At=aSt=s]Eπ[GtSt=s,At=a]=aπ(as)qπ(s,a)
  • t + 1 t+1 t+1时刻的状态价值表示 t t t时刻的动作价值函数:
    q π ( s , a ) = r ( s , a ) + γ ∑ s ′ p ( s ′ ∣ s , a ) v π ( s ′ ) = ∑ s ′ , r p ( s ′ , r ∣ s , a ) [ r + γ v π ( s ′ ) ] , s ∈ S , a ∈ A \begin{aligned} q_\pi(s, a) & =r(s, a)+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) v_\pi\left(s^{\prime}\right) \\ & =\sum_{s^{\prime},r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_\pi \left(s^{\prime}\right)\right], \quad s \in \mathcal{S}, a \in \mathcal{A} \end{aligned} qπ(s,a)=r(s,a)+γsp(ss,a)vπ(s)=s,rp(s,rs,a)[r+γvπ(s)],sS,aA
    (推导:对任意的状态 s ∈ S s \in \mathcal{S} sS 和动作 a ∈ A a \in \mathcal{A} aA, 有
    E π [ G t + 1 ∣ S t = s , A t = a ] = ∑ g g Pr ⁡ [ G t + 1 = g ∣ S t = S , A t = a ] = ∑ g g ∑ s ′ Pr ⁡ [ S t + 1 = s ′ , G t + 1 = g ∣ S t = s , A t = a ] = ∑ g g ∑ s ′ Pr ⁡ [ S t + 1 = s ′ , G t + 1 = g , S t = s , A t = a ] ‾ Pr ⁡ [ S t = S , A t = a ] ‾ 注意观察划线区域在下面的位置变化 = ∑ g g ∑ s ′ Pr ⁡ [ S t + 1 = s ′ , G t + 1 = g , S t = s , A t = a ] ‾ Pr ⁡ [ S t = s , A t = a , S t + 1 = s ′ ] ⋅ Pr ⁡ [ S t = s , A t = a , S t + 1 = s ′ ] Pr ⁡ [ S t = S , A t = a ] ‾ = ∑ g g ∑ s ′ Pr ⁡ [ S t + 1 = s ′ ∣ S t = s , A t = a ] Pr ⁡ [ G t + 1 = g ∣ S t = s , A t = a , S t + 1 = s ′ ] 利用 M a r k o v 性对后面部分进行精简 = ∑ g g ∑ s ′ Pr ⁡ [ S t + 1 = s ′ ∣ S t = s , A t = a ] Pr ⁡ [ G t + 1 = g ∣ S t + 1 = s ′ ] = ∑ s ′ Pr ⁡ [ S t + 1 = s ′ ∣ S t = s , A t = a ] ∑ g g Pr ⁡ [ G t + 1 = g ∣ S t + 1 = s ′ ] = ∑ s ′ Pr ⁡ [ S t + 1 = s ′ ∣ S t = s , A t = a ] E π [ G t + 1 ∣ S t + 1 = s ′ ] = ∑ s ′ p ( s ′ ∣ s , a ) v π ( s ′ ) \begin{aligned} & \mathrm{E}_\pi \left[G_{t+1} \mid S_t=s, A_t=a\right] \\ & =\sum_g g \operatorname{Pr}\left[G_{t+1}=g \mid S_t=S, A_t=a\right] \\ & =\sum_g g \sum_{s^{\prime}} \operatorname{Pr}\left[S_{t+1}=s^{\prime}, G_{t+1}=g \mid S_t=s, A_t=a\right] \\ & =\sum_g g \sum_{s^{\prime}} \frac{\operatorname{Pr} \underline{\left[S_{t+1}=s^{\prime}, G_{t+1}=g, S_t=s, A_t=a\right]}}{\operatorname{Pr} \underline{\left[S_t=S, A_t=a\right] }} \\ & 注意观察划线区域在下面的位置变化 \\ & =\sum_g g \sum_{s^{\prime}} \frac{\operatorname{Pr} \underline{\left[S_{t+1}=s^{\prime}, G_{t+1}=g, S_t=s, A_t=a\right]}}{\operatorname{Pr}\left[S_t=s, A_t=a, S_{t+1}=s^{\prime}\right]} \cdot \frac{ \operatorname{Pr}\left[S_t=s, A_t=a, S_{t+1}=s^{\prime}\right] }{\operatorname{Pr} \underline{\left[S_t=S, A_t=a\right] }} \\ & =\sum_g g \sum_{s^{\prime}} \operatorname{Pr}\left[S_{t+1}=s^{\prime} \mid S_t=s, A_t=a\right] \operatorname{Pr}\left[G_{t+1}=g \mid S_t=s, A_t=a, S_{t+1}=s^{\prime}\right] \\ & 利用Markov性对后面部分进行精简 \\ & =\sum_g g \sum_{s^{\prime}} \operatorname{Pr}\left[S_{t+1}=s^{\prime} \mid S_t=s, A_t=a\right] \operatorname{Pr}\left[G_{t+1}=g \mid S_{t+1}=s^{\prime}\right] \\ & =\sum_{s^{\prime}} \operatorname{Pr}\left[S_{t+1}=s^{\prime} \mid S_t=s, A_t=a\right] \sum_{g} g \operatorname{Pr}\left[G_{t+1}=g \mid S_{t+1}=s^{\prime}\right] \\ & =\sum_{s^{\prime}} \operatorname{Pr}\left[S_{t+1}=s^{\prime} \mid S_t=s, A_t=a\right] \mathrm{E}_\pi\left[G_{t+1} \mid S_{t+1}=s^{\prime}\right] \\ & =\sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) v_\pi\left(s^{\prime}\right) \\ & \end{aligned} Eπ[Gt+1St=s,At=a]=ggPr[Gt+1=gSt=S,At=a]=ggsPr[St+1=s,Gt+1=gSt=s,At=a]=ggsPr[St=S,At=a]Pr[St+1=s,Gt+1=g,St=s,At=a]注意观察划线区域在下面的位置变化=ggsPr[St=s,At=a,St+1=s]Pr[St+1=s,Gt+1=g,St=s,At=a]Pr[St=S,At=a]Pr[St=s,At=a,St+1=s]=ggsPr[St+1=sSt=s,At=a]Pr[Gt+1=gSt=s,At=a,St+1=s]利用Markov性对后面部分进行精简=ggsPr[St+1=sSt=s,At=a]Pr[Gt+1=gSt+1=s]=sPr[St+1=sSt=s,At=a]ggPr[Gt+1=gSt+1=s]=sPr[St+1=sSt=s,At=a]Eπ[Gt+1St+1=s]=sp(ss,a)vπ(s)

其中 Pr ⁡ [ G t + 1 = g ∣ S t = s , A t = a , S t + 1 = s ′ ] = P r [ G t + 1 = g ∣ S t + 1 = s ′ ] \operatorname{Pr}\left[G_{t+1}=g \mid S_t=s, A_t=a, S_{t+1}=s^{\prime} \quad\right]=Pr\left[G_{t+1}=g \mid S_{t+1}=s^{\prime}\right] Pr[Gt+1=gSt=s,At=a,St+1=s]=Pr[Gt+1=gSt+1=s] 用到了Markov性。

回忆前面我们定义的
G t = R t + 1 + γ R t + 2 + γ 2 R t + 3 + ⋯ = ∑ τ = 0 + ∞ γ τ R t + τ + 1 G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots = \sum_{\tau =0}^{+\infty} \gamma^\tau R_{t+\tau+1} Gt=Rt+1+γRt+2+γ2Rt+3+=τ=0+γτRt+τ+1
观察各项可以发现
G t + 1 = R t + 2 + γ R t + 3 + γ 2 R t + 4 + ⋯ = G t − R t + 1 γ G_{t+1} = R_{t+2} + \gamma R_{t+3} + \gamma^2 R_{t+4} + \cdots =\frac{G_t-R_{t+1}}{\gamma} Gt+1=Rt+2+γRt+3+γ2Rt+4+=γGtRt+1
也就是说 G t + 1 和 G t G_{t+1} 和 G_{t} Gt+1Gt存在递推关系
G t = R t + 1 + γ G t + 1 G_t =R_{t+1}+\gamma G_{t+1} Gt=Rt+1+γGt+1

回顾1.2公式

  • 给定 “状态 - 动作” 的期望奖励(1.2):
    r ( s , a ) = E [ R t + 1 ∣ S t = s , A t = a ] = ∑ r ∈ R r ∑ s ′ ∈ S p ( s ′ , r ∣ s , a ) , s ∈ S , a ∈ A r(s, a)=\mathrm{E}\left[R_{t+1} \mid S_{t}=s, A_{t}=a\right]=\sum_{r \in \mathbb{R}} r \sum_{s^{\prime} \in S} p\left(s^{\prime}, r \mid s, a\right), \quad s \in \mathcal{S}, a \in \mathcal{A} r(s,a)=E[Rt+1St=s,At=a]=rRrsSp(s,rs,a),sS,aA
    结合刚刚推导出的 E π [ G t + 1 ∣ S t = s , A t = a ] \mathrm{E}_\pi \left[G_{t+1} \mid S_t=s, A_t=a\right] Eπ[Gt+1St=s,At=a]的表达式
    利用上式,最终有

q π ( s , a ) = E π [ G t ∣ S t = s , A t = a ] = E π [ R t + 1 + γ G t + 1 ∣ S t = s , A t = a ] = E π [ R t + 1 ∣ S t = s , A t = a ] + E π [ γ G t + 1 ∣ S t = s , A t = a ] = E π [ R t + 1 ∣ S t = s , A t = a ] + γ E π [ G t + 1 ∣ S t = s , A t = a ] = ∑ r ∈ R r ∑ s ′ ∈ S p ( s ′ , r ∣ s , a ) + γ ∑ s ′ p ( s ′ ∣ s , a ) v π ( s ′ ) = ∑ s ′ , r p ( s ′ , r ∣ s , a ) [ r + γ v π ( s ′ ) ] \begin{aligned} q_\pi(s, a) & =\mathrm{E}_\pi\left[G_t \mid S_t=s, A_t=a\right] \\ & =\mathrm{E}_\pi\left[R_{t+1}+\gamma G_{t+1} \mid S_t=s, A_t=a\right] \\ & =\mathrm{E}_\pi\left[R_{t+1} \mid S_t=s, A_t=a\right]+\mathrm{E}_\pi\left[\gamma G_{t+1} \mid S_t=s, A_t=a\right] \\ & =\mathrm{E}_\pi\left[R_{t+1} \mid S_t=s, A_t=a\right]+\gamma \mathrm{E}_\pi\left[G_{t+1} \mid S_t=s, A_t=a\right] \\ & =\sum_{r \in \mathbb{R}} r \sum_{s^{\prime} \in S} p\left(s^{\prime}, r \mid s, a\right)+ \gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) v_\pi\left(s^{\prime}\right) \\ & =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_\pi \left(s^{\prime}\right)\right] \end{aligned} qπ(s,a)=Eπ[GtSt=s,At=a]=Eπ[Rt+1+γGt+1St=s,At=a]=Eπ[Rt+1St=s,At=a]+Eπ[γGt+1St=s,At=a]=Eπ[Rt+1St=s,At=a]+γEπ[Gt+1St=s,At=a]=rRrsSp(s,rs,a)+γsp(ss,a)vπ(s)=s,rp(s,rs,a)[r+γvπ(s)]
这样就得到了结果

不同时刻价值函数表示

  • 用下一时刻的状态价值函数表示当前时刻的状态价值函数
    ν π = ∑ a π ( s ∣ a ) ⋅ q π ( s , a ) , s ∈ S ν π = ∑ a π ( s ∣ a ) [ r ( s , a ) + γ ∑ s ′ p ( s ′ ∣ s , a ) ν π ( s ′ ) ] , s ∈ S \begin{aligned} \nu_\pi & =\sum_a \pi(s \mid a) \cdot q_\pi(s, a) , s \in S \\ \nu_\pi & =\sum_a \pi(s \mid a)\left[r(s, a)+\gamma \sum_{s^\prime} p\left(s^{\prime} \mid s, a\right) \nu_\pi\left(s^{\prime}\right)\right] , s \in S \end{aligned} νπνπ=aπ(sa)qπ(s,a),sS=aπ(sa)[r(s,a)+γsp(ss,a)νπ(s)],sS
  • 用下一时刻动作价值函数表示当前动作价值函数

q π ( s , a ) = ∑ s ′ , r p ( s ′ , r ∣ s , a ) [ r + γ v π ( s ′ ) ] , s ∈ S , a ∈ A q π ( s , a ) = ∑ s ′ , r p ( s ′ , r ∣ s , a ) [ r + γ ∑ a ′ π ( a ′ ∣ s ′ ) q π ( s ′ , a ′ ) ] , s ∈ S , a ∈ A \mathcal{q}_{\pi} (s, a)=\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_\pi \left(s^{\prime}\right)\right] , \quad s \in \mathcal{S}, a \in \mathcal{A} \\ \mathcal{q}_{\pi} (s, a)=\sum_{s^\prime,r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma \sum_{a^{\prime}} \pi\left(a^{\prime} \mid s^{\prime}\right) q_\pi\left(s^{\prime}, a^{\prime}\right)\right], \quad s \in \mathcal{S}, a \in \mathcal{A} qπ(s,a)=s,rp(s,rs,a)[r+γvπ(s)],sS,aAqπ(s,a)=s,rp(s,rs,a)[r+γaπ(as)qπ(s,a)],sS,aA


http://www.kler.cn/a/157313.html

相关文章:

  • 【机器学习】机器学习中用到的高等数学知识-3.微积分 (Calculus)
  • Java API类与接口:类的转换方法与正则表达式
  • 工业通信协议对比:OPC-UA、Modbus、MQTT、HTTP
  • 晨控RFID技术助力半导体制造业革新之路
  • 【网络】应用层——HTTP协议
  • 深入理解 React 架构从概览到核心机制
  • 你好!斐波那契查找【JAVA】
  • 黑猫带你学eMMC协议第31篇:什么是eMMC的驱动强度(Drive Strength)
  • 详解FreeRTOS:软件定时器(高级篇—4)
  • Rust 语言:认识 Rust
  • 考研英语语法(三十九)
  • 合并两个有序链表[简单]
  • UDS 诊断报文格式
  • Vue入门——v-on标签
  • 回溯和分支算法
  • Snagit 2024.0.1(Mac屏幕截图软件)
  • 【五分钟】熟练使用numpy.cumsum()函数(干货!!!)
  • 接口压测指南
  • Spring IOC—基于XML配置和管理Bean 万字详解(通俗易懂)
  • iOS ------ UICollectionView
  • Python —— Mock接口测试
  • ElasticSearch知识体系详解
  • 解码 SQL:深入探索 Antlr4 语法解析器背后的奥秘
  • Web前端 ---- 【vue】vue 组件传值(props、全局事件总线、消息的订阅与发布)
  • 10个顶级Linux开源反向代理服务器 - 解析与导航
  • 字节内部自动化测试教程:python+pytest接口自动化-接口测试一般流程及方法