当前位置: 首页 > article >正文

2022 gdcpc题解(10/13)

2022gdcpc

和学弟vp了一下这场,本来抓的数学选手咕咕了,只有2个人,打下来的感觉就是套路题和码量太大了,太久没写码量题导致 I I I调太久了,最后G没写完,K也没冲出来,感觉数学大爹在的话这K应该随便秒。

A.拼图

置换相关,数学爹不在不会

B.FFT

题解
考虑组合意义,其实就是输出n的排列

#include <bits/stdc++.h>
using namespace std;

int n;

int main() {
  ios::sync_with_stdio(0);
  cin.tie(0), cout.tie(0);
  cin >> n;
  int fc = 1;
  for (int i = 1; i <= n; i++)
    fc = 1ll * fc * (i) % 998244353;
  cout << fc << endl;
}

C.魔法师

不会,待补

D.剪纸

不难发现答案就是斐波那契数列,这题cf上个月好像才出了个类似的。注意 n = 2 n = 2 n=2特判

#include <bits/stdc++.h>
using namespace std;

long long n, f[1000];

int main() {
  ios::sync_with_stdio(0);
  cin.tie(0), cout.tie(0);
  cin >> n;
  f[0] = f[1] = 1;
  for (int i = 2; i <= 100; i++) {
    f[i] = f[i - 1] + f[i - 2];
  }
  int j = 0;
  if (n == 2) {
    cout << "1 1\n";
  } else {
    while (f[j + 2] <= n) j++;
    cout << f[j] << " " << f[j + 1] << endl;
  }
}

E.黑白大陆

考虑一种特殊情况,即对黑白格子两两染色,我们发现这不仅是个二分图,还是个分层图,所以考虑将同色块缩点,相邻不同色块的点进行连边,也是个分层图,从分层图上某个颜色到相邻点的代价即等价于一次魔法的代价。所以枚举每个点,最小值即是以该点为起点的任意点为终点的最短路的最大值,注意到达某点的时候,
假如该点颜色为黑色,需要再用一次魔法

#include <bits/stdc++.h>
using namespace std;

const int dx[] = {1, 0, -1, 0};
const int dy[] = {0, 1, 0, -1};
const int maxn = 2500 + 11;
int n, m, G[60][60], vis[60][60], sid[60][60], idcnt, col[maxn];
vector<unordered_set<int>> e;

void bfs(int i, int j, int c) {
  queue<pair<int, int>> q;
  q.push({i, j}), vis[i][j] = 1, sid[i][j] = idcnt;
  while (q.size()) {
    auto [x, y] = q.front();
    q.pop();
    for (int d = 0; d < 4; d++) {
      int tx = dx[d] + x, ty = dy[d] + y;
      if (tx <= 0 || ty <= 0 || tx > n || ty > m || vis[tx][ty] ||
          G[tx][ty] != c)
        continue;
      q.push({tx, ty}), vis[tx][ty] = 1, sid[tx][ty] = idcnt;
    }
  }
}

struct Node {
  int d, x;
  bool operator<(const Node& rhs) const { return d > rhs.d; }
};

int dis[maxn];
int dijkstra(int s) {
  for (int i = 0; i <= idcnt; i++) dis[i] = 1e9;
  priority_queue<Node> q;
  q.push({dis[s] = 0, s});
  int mxdis = 0, mxcol = col[s];
  while (q.size()) {
    auto [dd, x] = q.top();
    q.pop();
    if (dd != dis[x]) continue;
    if (dis[x] > mxdis) {
      mxdis = dis[x], mxcol = col[x];
    }
    for (int v : e[x]) {
      if (dis[v] > dis[x] + 1) {
        dis[v] = dis[x] + 1;
        q.push({dis[v], v});
      }
    }
  }
  return mxdis + mxcol;
}

int main() {
  ios::sync_with_stdio(0);
  cin.tie(0), cout.tie(0);
  cin >> n >> m;
  for (int i = 1; i <= n; i++)
    for (int j = 1; j <= m; j++) cin >> G[i][j];
  for (int i = 1; i <= n; i++)
    for (int j = 1; j <= m; j++)
      if (!vis[i][j]) ++idcnt, col[idcnt] = G[i][j], bfs(i, j, G[i][j]);

  e.assign(idcnt + 11, {});
  for (int i = 2; i <= n; i++) {
    for (int j = 1; j <= m; j++) {
      if (sid[i][j] != sid[i - 1][j]) {
        e[sid[i - 1][j]].insert(sid[i][j]);
        e[sid[i][j]].insert(sid[i - 1][j]);
      }
    }
  }
  for (int i = 1; i <= n; i++) {
    for (int j = 2; j <= m; j++) {
      if (sid[i][j] != sid[i][j - 1]) {
        e[sid[i][j - 1]].insert(sid[i][j]);
        e[sid[i][j]].insert(sid[i][j - 1]);
      }
    }
  }
  int ans = 1e9;
  for (int i = 1; i <= idcnt; i++) ans = min(ans, dijkstra(i));
  cout << ans << endl; 
}

F.望舒客栈的每日委托

队友写的,用set模拟即可

#include <bits/stdc++.h>
using namespace std;

const int maxn = 3e6 + 11;
int n, table_sz[maxn];
set<int> st[5];

struct Event {
  int Time, table, x, a, d, t;
  bool operator<(const Event& rhs) const { return Time > rhs.Time; }
};

int main() {
  ios::sync_with_stdio(0);
  cin.tie(0), cout.tie(0);
  cin >> n;
  priority_queue<Event> q;
  for (int i = 1, x, a, d, t; i <= n; i++) {
    cin >> x >> a >> d >> t;
    q.push({a, -1, x, a, d, t});
  }
  int ans = 0;
  while (q.size()) {
    auto it = q.top();
    q.pop();
    if (it.table == -1) {
      int mnid = -1, sz = -1;
      if (it.t) {
        for (int i = it.x; i <= 4; i++) {
          if (st[i].size()) {
            if (mnid == -1 || mnid > *st[i].begin())
              mnid = *st[i].begin(), sz = i;
          }
        }
      } else {
        if (st[4].size()) mnid = *st[4].begin(), sz = 4;
      }
      if (mnid == -1) {
        mnid = ++ans, sz = 4;
        st[4].insert(ans);
        table_sz[ans] = 4;
      }
      st[sz].erase(mnid);
      st[sz - it.x].insert(mnid);
      table_sz[mnid] = sz - it.x;
      q.push({it.d, mnid, it.x, it.a, it.d, it.t});
    } else {
      int mnid = it.table;
      st[table_sz[mnid]].erase(mnid);
      table_sz[mnid] += it.x;
      st[table_sz[mnid]].insert(mnid);
    }
  }
  cout << ans << endl;
}

G.Rock&Frog

考虑一个简单的 d p dp dp, d p [ i ] = d p [ j ] + a [ j ] c [ i ] 2 + b [ j ] c [ i ] dp[i] = dp[j] + a[j]c[i] ^2 + b[j]c[i] dp[i]=dp[j]+a[j]c[i]2+b[j]c[i]
考虑这是一个关于 c [ i ] c[i] c[i]的二次函数,似乎无法维护,根据题目给出的条件对两个二次函数做差与韦达定理,得到 x 1 + x 2 < 0 x_1 + x2 < 0 x1+x2<0, 又由于c[i] >= 0, 所以两个二次函数在 x > = 0 x>=0 x>=0有且只有一个交点,很多人对李超线段树存在误区,以为只能维护线段或直线,其实对于交点<= 1且只有两段单调性的函数,都可以用李超线段树来维护,这题就是类似维护直线分类讨论即可,注意标记永久化与动态开点,不得不吐槽的是,这题还要用__int128, 注意中间不要爆了。

#include<bits/stdc++.h>
#define lson lc[p], l, mid
#define rson rc[p], mid + 1, r
#define ls lc[p]
#define rs rc[p]
using namespace std;
using ll = __int128;
const int maxn = 1e5 + 5;
const ll inf = 1e18;
ll INF = (ll)inf * inf;
const int N = maxn * 18 * 4;
const int M = 1e9;
int a[maxn], b[maxn], c[maxn];
ll dp[maxn];
struct F {
    int a, b;
    ll c;
    ll cal(int x) {
        return (ll) a * x * x + (ll)b * x + c;
    }
} fx[maxn];

void print(__int128 x) {
    if (x < 0) {
        putchar('-');
        x = -x;
    }
    if (x > 9)
        print(x / 10);
    putchar(x % 10 + '0');
}

struct SegmentTree {
    int lc[N], rc[N], cnt;
    F ff[N];
    void update(int &p, int l, int r, int L, int R, F x) {
        if (!p) {
            p = ++cnt;
            ff[p] = x;
            ls = rs = 0;
            return;
        }
        if (L <= l && r <= R) {
            if (x.cal(l) < ff[p].cal(l) && x.cal(r) < ff[p].cal(r)) {
                ff[p] = x;
            } else if (x.cal(l) >= ff[p].cal(l) && x.cal(r) >= ff[p].cal(r)) {
                return;
            } else {
                int mid = l + r >> 1;
                if (x.cal(l) > ff[p].cal(l)) {
                    if (ff[p].cal(mid) > x.cal(mid)) {
                        update(lson, L, R, ff[p]);
                        ff[p] = x;
                    } else {
                        update(rson, L, R, x);
                    }
                } else {
                    if (x.cal(mid) > ff[p].cal(mid)) {
                        update(lson, L, R, x);
                    } else {
                        update(rson, L, R, ff[p]);
                        ff[p] = x;
                    }
                }
            }
            return;
        }
        int mid = l + r >> 1;
        if (L <= mid)
            update(lson, L, R, x);
        if (R > mid) 
            update(rson, L, R, x);
    }
    ll query(int p, int l, int r, int x) {
        if (!p)
            return INF;
        if (l == r) {
            return ff[p].cal(x);
        }
        int mid = l + r >> 1;
        ll ans = ff[p].cal(x);
        if (x <= mid)
            return min(ans, query(lson, x));
        else
            return min(ans, query(rson, x));
    }
}tr;

int main() {
    int n;
    scanf("%d", &n);
    for (int i = 1; i <= n; ++i) {
        scanf("%d%d%d", &a[i], &b[i], &c[i]);
        fx[i].a = a[i], fx[i].b = b[i];
    }
    dp[1] = 0;
    fx[1].c = dp[1];
    int rt = 0;
    tr.update(rt, 0, M, 0, M, fx[1]);
    for (int i = 2; i <= n; ++i) {
        dp[i] = tr.query(rt, 0, M, c[i]);
        fx[i].c = dp[i];
        tr.update(rt, 0, M, 0, M, fx[i]);
    }
    print(dp[n]);
    return 0;
}

H.梅花易数

队友写的模拟

#include <bits/stdc++.h>
using namespace std;

map<string, int> H;
map<int, int> T;

void print(int S) {
  for (int i = 0; i < 6; i++) {
    int s = (S >> i) & 1;
    if (s) cout << "---" << endl;
    else cout << "- -" << endl;
  }
}

int main() {
  ios::sync_with_stdio(0);
  cin.tie(0), cout.tie(0);
  H["Zi"] = 1;
  H["Chou"] = 2;
  H["Yin"] = 3;
  H["Mao"] = 4;
  H["Chen"] = 5;
  H["Si"] = 6;
  H["Wu"] = 7;
  H["Wei"] = 8;
  H["Shen"] = 9;
  H["You"] = 10;
  H["Xu"] = 11;
  H["Hai"] = 12;

  T[1] = 7;
  T[2] = (0) | (1 << 1) | (1 << 2);
  T[3] = (1) | (0 << 1) | (1 << 2);
  T[4] = (0) | (0 << 1) | (1 << 2);
  T[5] = (1) | (1 << 1) | (0 << 2);
  T[6] = (0) | (1 << 1) | (0 << 2);
  T[7] = (1) | (0 << 1) | (0 << 2);
  T[0] = (0) | (0 << 1) | (0 << 2);

  string y, h;
  int m, d;

  cin >> y >> m >> d >> h;

  int t0 = (H[y] + m + d) % 8;
  int t1 = (H[y] + m + d + H[h]) % 8;
  int t2 = (H[y] + m + d + H[h]) % 6;

  if (t2 == 0) t2 = 5;
  else t2 -= 1;

  print(T[t0] | (T[t1] << 3));
  cout << endl;
  print((T[t0] | (T[t1] << 3)) ^ (1 << (5 - (t2))));
}

I.Rock&String

转化后等价于问任意某个字符串的任意两个之间的最小距离差值。
无聊的SAM套路题,SAM parents树上线段树合并即可,线段树维护距离左端点的endpos最小距离,距离右端点的endpos的最小距离,询问的时候倍增跳过去查,纯码农题,vp的时候调了1h, 吐了

#include<bits/stdc++.h>
#define lson lc[p], l, mid
#define rson rc[p], mid + 1, r
#define ls lc[p]
#define rs rc[p]
using namespace std;
const int INF = 2e9;
const int maxn = 4e5 + 5;
const int N = maxn * 18 * 4;
struct SAM {
    int len[maxn], link[maxn], ch[maxn][26], last, tot, rt[maxn], ld[N], rd[N], ans[N], lc[N], rc[N], cnt, lg[maxn];
    int strlen, f[maxn][22], d[maxn], pos[maxn];
    vector<int> G[maxn];
    SAM() {
        tot = last = 1;
    }
    void pushUp(int p, int l, int r) {
    	int mid = l + r >> 1;
    	if (!ls) {
    		ld[p] = ld[rs] + (mid - l + 1);
    		rd[p] = rd[rs];
    		ans[p] = ans[rs];
		} else if(!rs) {
			rd[p] = rd[ls] + (r - mid);
			ld[p] = ld[ls];
			ans[p] = ans[ls];
		} else {
			ld[p] = ld[ls];
        	rd[p] = rd[rs];
        	ans[p] = min({ans[ls], ans[rs], rd[ls] + ld[rs] + 1});
		}
    }
    void update(int &p, int l, int r, int x, int val) {
        if (!p)
            p = ++cnt;
        if (l == r) {
            ld[p] = rd[p] = 0;
            ans[p] = INF;
            return;
        }
        int mid = l + r >> 1;
        if (x <= mid)
            update(lson, x, val);
        else
            update(rson, x, val);
        pushUp(p, l, r);
    }
    int merge(int p, int q, int l, int r) {
        if (!p || !q)
            return p + q;
        int x = ++cnt;
        if (l == r) {
            ld[x] = min(ld[p], ld[q]);
            rd[x] = min(rd[p], rd[q]);
            ans[x] = min(ans[p], ans[q]);
            return x;
        }
        int mid = l + r >> 1;
        lc[x] = merge(ls, lc[q], l, mid);
        rc[x] = merge(rs, rc[q], mid + 1, r);
        pushUp(x, l, r);
        return x;
    }
    void dfs(int x, int fa) {
        d[x] = d[fa] + 1;
        f[x][0] = fa;
        for (int i = 1; i <= lg[d[x]]; ++i) 
            f[x][i] = f[f[x][i - 1]][i - 1];
        for (auto &v : G[x]) {
            dfs(v, x);
            rt[x] = merge(rt[x], rt[v], 1, strlen);
        }
    }
    int extend(int c, int id) {
        int cur = ++tot, p = last; last = cur;
        len[cur] = len[p] + 1;
        update(rt[cur], 1, strlen, len[cur], 1);
        for (;p&&!ch[p][c]; p = link[p])
            ch[p][c] = cur;
        if (!p)
            link[cur] = 1;
        else {
            int q = ch[p][c];
            if (len[p] + 1 == len[q])
                link[cur] = q;
            else {
                int clone = ++tot;
                memcpy(ch[clone], ch[q], sizeof(ch[q]));
                len[clone] = len[p] + 1;
                link[clone] = link[q];
                link[q] = link[cur] = clone;
                for (; p && ch[p][c] == q; p = link[p]) {
                    ch[p][c] = clone;
                }
            }
        }
        return cur;
    }
    void solve() {
        for (int i = 1; i <= tot; ++i) {
            lg[i] = lg[i - 1] + (1 << lg[i - 1] == i);
        }
        for (int i = 2; i <= tot; ++i) {
            G[link[i]].emplace_back(i);
        }
        dfs(1, 0);
        int m;
        cin >> m;
        for (int i = 1; i <= m; ++i) {
            int l, r;
            cin >> l >> r;
            int ps = pos[r];
            for (int i = 19; i >= 0; --i) {
                if (len[f[ps][i]] >= r - l + 1) {
                    ps = f[ps][i];
                }
            }
            if (ps == 1 || ans[rt[ps]] == INF) {
                cout << -1 << '\n';
            } else {
                cout << r - l + ans[rt[ps]] + 1 << '\n';
            }
        }
    }
} sam;

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    string s;
    cin >> s;
    sam.strlen = s.length();
    for (int i = 0; i < s.length(); ++i) {
        sam.pos[i + 1] = sam.extend(s[i] - 'a', i + 1);
    }
    sam.solve();
    return 0;
}

/*
abaabccababc
5
1 2
3 4
6 6
1 9
1 3

4
-1
2
-1
10


*/

J.新英雄

可撤销贪心。
1的位置是敌方小兵就无解。
我们能拿法力就拿法力,遇到敌人直接走,假如遇到敌人不够法力的时候,在0 - 1复用得到2点法力,最后的时候累计的时间减去累计法力 / 2 向下取整即可,考虑这个可撤销贪心的正确性,因为你在友军拿法力值的时候,你撤销等价于先少一点法力,再走斩消耗一点法力,所以相当于撤销2点法力,所以最后一定是2点2点法力可以全部考虑到0 - 1, 相当于提前预支代价。

#include<bits/stdc++.h>
#define int long long
using namespace std;
using ll = long long;
const int maxn = 1e5 + 5;
struct Seg {
    int t, l, r;
    friend bool operator<(const Seg&x, const Seg&y) {
        return x.l < y.l;
    }
}seg[maxn], seg2[maxn];
int n, m, num;

signed main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    cin >> n >> m;
    for (int i = 1; i <= m; ++i) {
        cin >> seg[i].t >> seg[i].l >> seg[i].r;
    }
    seg[0].t = 1;
    seg[0].l = seg[0].r = 0;
    seg2[0].t = 1;
    seg2[0].l = seg2[0].r = 0;
    sort(seg + 1, seg + 1 + m);
    for (int i = 1; i <= m; ++i) {
        if (seg[i].t == seg2[num].t) {
            seg2[num].r = max(seg2[num].r, seg[i].r);
        } else {
            seg2[++num].t = seg[i].t;
            seg2[num].l = seg[i].l;
            seg2[num].r = seg[i].r;
        }
    }
    if (!seg2[0].r) {
        cout << "0/21/0";
        return 0;
    }
    ll ans = 0, sum = 0;
    for (int i = 0; i <= num; ++i) {
        int len = seg2[i].r - seg2[i].l + 1 - (i == 0);
        if (seg2[i].t == 1) {
            sum += len;
            ans += 3 * len;
        } else {
            if (sum < len) {
                ll res = len - sum;
                if (res & 1) {
                    res++;
                }
                sum += res;
                ans += 3 * res;
            }            
            ans += len;
            sum -= len;
        }
    }
    cout << ans - sum / 2 * 2; 
    return 0;
}

K.斐波那契

不会,数学队友不在,另一个队友没rush出来

L.启航者

O ( n 2 ) O(n^2) O(n2)枚举点,套路的考虑换根dp,f[x]表示从根往子树方向走最大值的答案, d p [ i ] [ 0 / 1 ] dp[i][0/1] dp[i][0/1] 表示从 i i i点出发下一个走最大值还是次大值的答案,先 d f s dfs dfs一次求出f和 d p [ 1 ] [ ∗ ] dp[1][*] dp[1][],第二次从1进去 d f s dfs dfs的时候, 对于 x x x点,考虑走父亲还是儿子,同时考虑父亲是自己的最大还是次大,自己是父亲的最大还是次大,转移即可, 这里的值是无重复的,直接记录最大次大值转移即可。

#include<bits/stdc++.h>

using namespace std;
using ll = long long;
const int maxn = 1e6 + 5;
vector<int> G[maxn];
ll dp[maxn][2], f[maxn];
int n, mx[maxn][2], a[maxn];

void dfs1(int x, int fa) {
    int mx = -1, id = 0;
    for (auto &v : G[x]) {
        if (v == fa)
            continue;
        if (a[v] > mx) {
            mx = a[v];
            id = v;
        }
    }
    for (auto &v : G[x]) {
        if (v == fa)
            continue;
        dfs1(v, x);
    }
    f[x] = f[id] + a[x];
}

void getMx(int x, int v) {
    if (a[v] > mx[x][0]) {
        mx[x][1] = mx[x][0];
        mx[x][0] = a[v];
    } else if (a[v] > mx[x][1]) {
        mx[x][1] = a[v];
    }
}

void dfs2(int x, int fa) {
    for (auto &v : G[x]) {
        if (v == fa && x != 1) {
            if (a[v] == mx[x][0]) {
                if (mx[v][0] == a[x]) {
                    dp[x][0] = dp[fa][1] + a[x];
                } else {
                    dp[x][0] = dp[fa][0] + a[x];
                }
            } else if (a[v] == mx[x][1]) {
                if (a[x] == mx[v][0]) {
                    dp[x][1] = dp[fa][1] + a[x];
                } else {
                    dp[x][1] = dp[fa][0] + a[x];
                }
            }
        } else {
            if (a[v] == mx[x][0]) {
                dp[x][0] = a[x] + f[v];
            } else if(a[v] == mx[x][1]) {
                dp[x][1] = a[x] + f[v];
            }
        }
    }
    for (auto & v: G[x]) {
        if (v == fa) 
            continue;
        dfs2(v, x);
    }
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    cin >> n;
    for (int i = 2; i <= n; ++i) {
        int x;
        cin >> x;
        G[i].emplace_back(x);
        G[x].emplace_back(i);
    }
    for (int i = 1; i <= n; ++i) {
        cin >> a[i];
    }
    for (int i = 1; i <= n; ++i) {
        mx[i][0] = mx[i][1] = -1;
        dp[i][0] = dp[i][1] = a[i];
    }
    for (int i = 1; i <= n; ++i) {
        for (auto v : G[i]) {
            getMx(i, v);
        }
    }
    dfs1(1, 0);
    for (int i = 1; i <= n; ++i) {
        if (a[i] == mx[1][0]) {
            dp[1][0] = f[i] + a[1];
        } else if(a[i] == mx[1][1]) {
            dp[1][1] = f[i] + a[1];
        }
    }
    dfs2(1, 0);
    ll ans = 0;
    int id = 0;
    for (int i = 1; i <= n; ++i) {
        ans = max(ans, dp[i][0]);
    }
    for (int i = 1; i <= n; ++i) {
        if (dp[i][0] == ans) {
            id = i;
            break;
        }
    }
    cout << id << "\n" << ans;
    return 0;
}

M.拉格朗日插值

原题套皮,怎么大四还要推拉格朗日乘数法啊,队友正好在考研让他给了公式,然后自己推了一下,推完后最大值是 k ( − k / 2 ) k^{(-k/2)} k(k/2), 考虑剩下的子问题就是个傻逼题,2020年澳门 A A A题也出过, 构造生成函数 F ( x ) = ∏ i = 1 m ( 1 + b i x ) F(x) = \prod_{i = 1} ^ {m} (1 + b_ix) F(x)=i=1m(1+bix), 做分治 f f t fft fft即可,答案即是第 k k k项的系数,最终答案是 k − k / 2 F ( x ) [ k ] ∗ i n v ( C ( m , k ) ) k^{-k/2} F(x)[k] * inv(C(m, k)) kk/2F(x)[k]inv(C(m,k))

#include<bits/stdc++.h>

using namespace std;
using ll = long long;
const int mod = 998244353, G = 3;
const int maxn = 1e5 + 5;

int b[maxn];

int mul(int x, int y) {
    return (ll) x * y % mod;
}

int Add(int x, int y) {
    x += y;
    if (x >= mod)
        x -= mod;
    return x;
}

int Sub(int x, int y) {
    x -= y;
    if (x < 0)
        x += mod;
    return x;
}

int mypow(int a, int b) {
    int ans = 1;
    while (b) {
        if (b & 1)
            ans = mul(ans, a);
        a = mul(a, a);
        b >>= 1;
    }
    return ans;
}

namespace Poly
{
    typedef vector<int> poly;
    poly roots, rev;
    void getRevRoot(int base) {
        int lim = 1 << base;
        if ((int)roots.size() == lim)
            return;
        roots.resize(lim);rev.resize(lim);
        for (int i = 1; i < lim; ++i)
            rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (base - 1));
        for (int mid = 1; mid < lim; mid <<= 1) {
            int wn = mypow(G, (mod - 1) / (mid << 1));
            roots[mid] = 1;
            for (int i = 1; i < mid; ++i)
                roots[mid + i] = mul(roots[mid + i - 1], wn);
        }
    }
    void ntt(poly &a, int base) {
        int lim = 1 << base;
        for (int i = 0; i < lim; ++i) {
            if (i < rev[i])
                swap(a[i], a[rev[i]]);
        }
        for (int mid = 1; mid < lim; mid <<= 1) {
            for (int i = 0; i < lim; i += (mid << 1)) {
                for (int j = 0; j < mid; ++j) {
                    int x = a[i + j], y = mul(a[i + j + mid], roots[j + mid]);
                    a[i + j] = Add(x, y);
                    a[i + j + mid] = Sub(x, y);
                }
            }
        }
    }
    poly operator*(poly a, poly b) {
        int lim = (int)a.size() + (int)b.size() - 1, base = 0;
        while ((1 << base) < lim)
            ++base;
        a.resize(1 << base);
        b.resize(1 << base);
        getRevRoot(base);
        ntt(a, base);
        ntt(b, base);
        for (int i = 0; i < (1 << base); ++i)
            a[i] = mul(a[i], b[i]);
        ntt(a, base);
        reverse(a.begin() + 1, a.end());
        a.resize(lim);
        int inv = mypow(1 << base, mod - 2);
        for (int i = 0; i < lim; ++i)
            a[i] = mul(a[i], inv);
        return a;
    }
    poly solve(int l, int r) {
        if (l == r) {
            return {1, b[l]};
        }
        int mid = l + r >> 1;
        return solve(l, mid) * solve(mid + 1, r);
    }
} // namespace name

int fac[maxn], facinv[maxn];

void init() {
    fac[1] = fac[0] = 1;
    for (int i = 2; i < maxn; ++i)
        fac[i] = (ll) fac[i - 1] * i % mod;
    facinv[maxn - 1] = mypow(fac[maxn - 1], mod - 2);
    for (int i = maxn - 2; i >= 0; --i)
        facinv[i] = (ll)facinv[i + 1] * (i + 1) % mod;
}   

int C(int n, int m) {
    return (ll)fac[n] * facinv[n - m] % mod * facinv[m] % mod;
}

int main() {
    init();
    int n, k;
    cin >> n >> k;
    for  (int i = 1; i <= n; ++i) {
        cin >> b[i];
    }
    auto it = Poly::solve(1, n);
    cout << (ll)(mypow(mypow(k, k / 2), mod - 2)) * it[k] % mod * mypow(C(n, k), mod - 2) % mod;
    return 0;
}

感觉GDCPC还是一贯的套路题巨多,机时还是很紧缺的。


http://www.kler.cn/a/15824.html

相关文章:

  • ThinkPHP 模型如何更新数据
  • STM32寄存器结构体详解
  • C函数如何返回参数lua使用
  • FPGA使用Verilog实现CAN通信
  • Python酷库之旅-第三方库Pandas(218)
  • C++map和set(二)
  • Battle Symphony
  • Terraform
  • autosar软件分层架构组成--汽车电子
  • java中设计模式
  • dpdk安装在虚拟机上如何安装
  • 数字化转型导师坚鹏:数字化转型背景下的保险公司人力资源管理
  • 【SpringBoot系列】接收前端参数的几种方式
  • 音视频 FFmpeg
  • SpringBoot事务管理-5个面试核心类源码刨析
  • 【源码解析】SpringBoot日志系统源码分析
  • 【高危】MySQL Server拒绝服务漏洞(CVE-2023-21912)
  • InnoDB 引擎 底层逻辑
  • 前端面试题汇总-代码输出篇
  • Spring Schedule如何动态添加修改定时任务
  • 数据库预科与增删查改(CURD)
  • 手搓实现矩阵操作
  • 什么是阻抗?影响阻抗的因素有哪些?
  • java第三天
  • 区块链在元宇宙中的作用(二)
  • ShareSDK 抖音平台注册