当前位置: 首页 > article >正文

人工智能之配置环境教程二:在Anaconda中创建虚拟环境安装GPU版本的Pytorch及torchvision并在VsCode中使用虚拟环境

人工智能之配置环境教程二:在Anaconda中创建虚拟环境安装GPU版本的Pytorch及torchvision并在VsCode中使用虚拟环境

  • 作者介绍
  • 一. 查看自己电脑的CUDA版本
    • 1.1 方式一
    • 1.2 方式二
  • 二. 下载安装CUDA
  • 三. 查看环境变量
  • 四. 创建虚拟环境
    • 4.1 使用指令创建虚拟环境
    • 4.2 查看Anconda中是否出现创建好的虚拟环境
    • 4.3 虚拟环境相关指令
  • 五. 安装GPU版本的Pytorch和torchvision
    • 5.1 在线安装
    • 5.2 离线安装
      • 5.2.1 下载安装torch
      • 5.2.2 下载安装torchvision
    • 5.3 验证是否成功安装
  • 六. 在VsCode 中使用虚拟环境
    • 6.1 安装Python插件
    • 6.2 添加虚拟环境
  • 七. 安装CPU版本的Pytorch和torchvision

作者介绍

孟莉苹,女,西安工程大学电子信息学院,2021级硕士研究生,张宏伟人工智能课题组。
研究方向:机器视觉与人工智能。
电子邮件:2425613875@qq.com

本教程提供需要安装的CUDA11.3、Pytorch1.10.0、torchvision0.11.0的安装包,在下述百度网盘链接中自取!

链接:https://pan.baidu.com/s/18mgO8GtW1UnG6uijnnQvIQ?pwd=0843 提取码:0843
–来自百度网盘超级会员V5的分享

一. 查看自己电脑的CUDA版本

根据以下两种方式,查看自己的电脑是否支持CUDA,如果不支持,那么直接跳到[ 七 ]!

1.1 方式一

1.1 .1 使用快捷键‘win + R’- - -> 输入 cmd - - -> 点击确定
在这里插入图片描述

1.1.2 在终端输入指令‘nvidia-smi’ - - -> 查看自己电脑支持的CUDA版本

当前CUDA版本为11.6,表示支持最高版本的CUDA是11.6,向下兼容

在这里插入图片描述

1.2 方式二

1.2.1 在桌面右击 - - -> 打开NVIDIA 控制面板

在这里插入图片描述

1.2.2 在帮助下 - - -> 选择系统信息

在这里插入图片描述

1.2.3 在组件 - - -> 查看CUAN版本

在这里插入图片描述

二. 下载安装CUDA

NVIDIA官网: https://developer.nvidia.com/cuda-toolkit-archive

  • 在NVIDIA官网找到适合自己电脑的CUDA版本,这里建议在满足要求的情况下安装CUDA11.3;本教程提供CUDA11.3版本的安装包
    在这里插入图片描述
  • 选择对应版本的CUDA后进行下载安装;
    在这里插入图片描述
  • 下载好之后安装在默认路径下即可;

CUDA安装参考帖子:https://blog.csdn.net/m0_45447650/article/details/123704930/.

三. 查看环境变量

1. 在设置中–>搜索高级系统设置–>查看环境变量

  • 在环境系统中应该出现以下四个环境变量:
    (该环境变量是CUDA11.3版本的,其他版本的需要和自己下载的CUDA版本相对应)

CUDA_PATH
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3

CUDA_PATH_V11_3
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3

NVCUDASAMPLES_ROOT
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.3

NVCUDASAMPLES11_3_RO…
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.3

在这里插入图片描述
在这里插入图片描述

  • 若没有相应的环境变量需要手动添加

验证CUDA是否安装成功

  • 运行cmd,输入 ‘nvcc -v’ 即可查看版本号;

  • 输入 ‘set cuda’ ,可查看 CUDA 设置的环境变量
    出现下图所示则表明成功安装CUDA
    在这里插入图片描述
    CUDA安装参考帖子:https://blog.csdn.net/m0_45447650/article/details/123704930/.

四. 创建虚拟环境

4.1 使用指令创建虚拟环境

  • 添加镜像源:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/
conda config --set show_channel_urls yes
conda config --set ssl_verify false
  • 创建虚拟环境,本次教程安装Python3.6版本;本地cmd终端运行如下指令:
conda create -n py36 python=3.6

在这里插入图片描述

在这里插入图片描述

4.2 查看Anconda中是否出现创建好的虚拟环境

打开Anconda,点击Environments查看是否有名为py36的虚拟环境

在这里插入图片描述
: 接下来在名为py36的虚拟环境中安装各种科学计算包和框架(Pytorch),若有多个环境,那么例如需要python3.7,那么就创建python3.7的虚拟环境,有conda管理不会出现版本冲突。

4.3 虚拟环境相关指令

a : 终端运行如下指令:查看本地环境

conda env list

b: 终端运行如下指令:进入虚拟环境

conda activate py36

c: 终端运行如下指令:退出虚拟环境

conda deactivate

注意事项:进入虚拟环境如图:会有小括号(虚拟环境名:py36),进入虚拟环境后就可以在Python为3.6的环境下配置Pytorch了,尽情安装吧!

五. 安装GPU版本的Pytorch和torchvision

本教程安装CUDA11.3、Pytorch1.10.0、torchvision0.11.0

安装Pytorch和torchvision分为两种方式,在线方式和离线方式;若在线方式在安装过程中出现安装不上的问题,则可选择离线安装,会提供相应的安装包。

5.1 在线安装

  • 安装镜像源:依次执行下面五条指令;
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/
conda config --set show_channel_urls yes
conda config --set ssl_verify false
  • 在本地终端进入创建好的虚拟环境(py36),当最前面出现(py36),则表明已进入py36的虚拟环境;在这里插入图片描述
    - 进入Pytorch官网:https://pytorch.org/

  • 点击以往Pytorch版本
    在这里插入图片描述

  • 找到 Windows 系统下 CUDA11.3 下的 Pytorch 安装指令,并复制;
    若安装的CUDA版本不是11.3,则需要选择对应版本的 Pytorch 和 torchvision
    在这里插入图片描述

  • 粘贴在cmd本地终端的py36虚拟环境中运行安装:

conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge

在这里插入图片描述

5.2 离线安装

5.2.1 下载安装torch

Pytorch下载链接:https://download.pytorch.org/whl/torch_stable.html.

  • 选择对应版本的torch并下载
    在这里插入图片描述
    在这里插入图片描述

  • 在本地终端输入以下指令进行离线安装,当出现 Successfully installed… 则表明安装成功;使用下面三个中的任意一个指令即可;

pip install F:\Demo\torch\torch-1.10.0+cu113-cp36-cp36m-win_amd64.whl
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple F:\Demo\torch\torch-1.10.0+cu113-cp36-cp36m-win_amd64.whl
pip install F:\Demo\torch\torch-1.10.0+cu113-cp36-cp36m-win_amd64.whl http://pypi.douban.com/simple/trusted host pypi.douban.com

备注:上述指令中的“F:\Demo\torch\torch-1.10.0+cu113-cp36-cp36m-win_amd64.whl”表示torch安装包的路径+文件名;根据自己的情况进行更改;

在这里插入图片描述

5.2.2 下载安装torchvision

Pytorch、torchvision和python具有版本对应关系

  • Pytoch 和 torchvision 的版本对应关系可在Pytorch官网查询,如下:
    在这里插入图片描述

本教程查到 Pytoch1.10.0 对应的 torchvision 版本为 0.11.0

  • 离线下载torchvision 0.11.0
    torchvision下载链接:https://download.pytorch.org/whl/torch_stable.html.

在这里插入图片描述

在这里插入图片描述

  • 使用 pip 指令安装torchvision0.11.2;使用下面三个中的任意一个指令即可;
pip install F:\Demo\torchvision\torchvision-0.11.0+cu113-cp36-cp36m-win_amd64.whl
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple F:\Demo\torchvision\torchvision-0.11.0+cu113-cp36-cp36m-win_amd64.whl
pip install F:\Demo\torchvision\torchvision-0.11.0+cu113-cp36-cp36m-win_amd64.whl http://pypi.douban.com/simple/trusted host pypi.douban.com

备注:上述指令中的 “F:\Demo\torchvision\torchvision-0.11.0+cu113-cp36-cp36m-win_amd64.whl” 表示 torchvision 安装包的路径+文件名;根据自己的情况进行更改;

- 若在安装torchvision的过程中出现自动更新torch的情况,则使用下述指令安装torchvision;

pip install --no-deps F:\Demo\torchvision\torchvision-0.11.0+cu113-cp36-cp36m-win_amd64.whl

在这里插入图片描述

5.3 验证是否成功安装

  • 安装完成后,在虚拟环境中依次运行如下指令进行验证Pytoch是否安装成功以及GPU是否可用;
python
import torch 
torch.cuda.is_available()

在这里插入图片描述

若 import torch 不报错,说明 torch 安装成功

若 torch.cuda.is_available() 结果为True,则表示GPU版本安装完成

六. 在VsCode 中使用虚拟环境

6.1 安装Python插件

  • 进入VsCode软件,点击“扩展”,并在搜索框中输入Python,然后选择Python插件右下角的Install;
    在这里插入图片描述

6.2 添加虚拟环境

  • 按快捷键 “Ctrl+Shift+P” ,调出全局设置搜索窗口,然后输入 “Python:Select Interpreter” 后会出现 “Python:Select Interpreter” 选项,点击该选项;
    在这里插入图片描述

  • 点击该选项会后跳转到 Python 解释器配置窗口,这里显示的是已经添加好的Python解释器,选择py36,即可在VsCode中使用Python了;
    在这里插入图片描述

  • 注意事项:若VsCode进入终端后是PS环境;则先在终端中输出cmd,退出PS环境,再手动输入 “conda activate py36” 进入配置好的py36环境中; 通过输入“pip list” 即可查看安装好的 torch 和 torchvision,确认是自己下载安装的版本即可;
    在这里插入图片描述

以上就是关于在 Anaconda 中创建虚拟环境、安装GPU版本的Pytorch及torchvision、以及在VsCode中使用虚拟环境的全部内容!!!

接下来是CPU版本的Pytorch的安装教程!!!

前提:先完成步骤四.创建虚拟环境

七. 安装CPU版本的Pytorch和torchvision

  • 进入虚拟环境,使用Pytoch官网根据指令安装运行即可;
    在这里插入图片描述
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cpuonly -c pytorch
  • 验证是否安装成功,import torch不报错就成功了:
python 
import torch 

以上就是关于在 Anaconda 中创建虚拟环境、安装CPU版本的Pytorch及torchvision的全部内容!!!


http://www.kler.cn/a/15852.html

相关文章:

  • candence : 通孔焊盘、插装器件封装绘制
  • 深入解析 CentOS 7 上 MySQL 8.0 的最佳实践20241112
  • Godot的开发框架应当是什么样子的?
  • ThriveX 博客管理系统前后端项目部署教程
  • 蓝桥杯每日真题 - 第14天
  • Opengl光照测试
  • leetcode 45. 跳跃游戏 II
  • KALI入门到高级【第三章】
  • iOS autorelease 示例研究
  • 读SQL进阶教程笔记14_SQL编程要点
  • 倾斜摄影超大场景的三维模型的顶层合并的轻量化处理技术
  • 信息系统项目管理师 第9章 项目范围管理
  • 如何理解自动化测试数据驱动与关键字驱动的区别?
  • 【C生万物】 指针篇 (初级)
  • 程序员都有哪些就业方向?不是所有人都能去互联网公司的!
  • Git HEAD及detached head
  • Android JetPack组件之Lifecycle
  • Linux中的阻塞机制
  • NetMQ | 发布订阅时使用含通配符的Topic
  • 第十一章 Transform组件(上)
  • 04_Uboot操作命令与其他命令
  • Shell(五)Bash行操作目录堆栈
  • gitlab部署及整合Jenkins持续构建(四)sonarqube9.9安装和使用(一步一坑)
  • 使用CXF调用WSDL
  • 如何高效的学习接口自动化测试?从零开始学习接口自动化测试:选择合适的学习资源和编程语言
  • 电脑硬盘检测怎么操作?如何检查硬盘的健康情况?