当前位置: 首页 > article >正文

目标检测常用评价指标

1 基本概念
1.1 IOU(Intersection over Union)
1.2 TP TN FP FN
2. 各种率
3. PR曲线
4. mAP的计算
4.1 AP的计算
4.2 mAP
4.3 mAP@0.5和mAP@0.5:0.95

1.1 IOU(Intersection over Union)
在这里插入图片描述

1.2 TP TN FP FN
TP(Truth Positive): 预测正类,实际正类,即预测正确
TN(Truth Negative):预测负类,实际负类,即预测正确
FP(False Positive): 预测正类,实际负类,即预测错误,和误检率有关
FN(False Negative):预测负类,实际正类,即预测错误,和漏检率有关
预测对(不管正负)即T,否则P;预测为正类即P(不管正确与否),否则负类N
2. Accuracy、Precision、Recall、F1 SCORE
Accuracy:准确率, ( T P + T N ) / ( P + N )(TP+TN)/(P+N),即正负样本正确数量/总样本。这个指标在样本比例差异较大时,容易失效,因为只要将全部预测成比例多的那种即可得到很高的准确率。
Precision:精确率,也可认为是查准率,预测的正类中对了几个T P / ( T P + F P )TP/(TP+FP),即正确预测正类/(正确预测正类+错误预测正类)=正确预测正类/所有预测正类样本,你猜的全部正类中,查得正确的正类的数量。误检率=1-Precision
Recall:召回率,也可认为是查全率,全部正类中你猜对了几个T P / ( T P + F N )TP/(TP+FN),即预测正确正类/(预测正确正类+预测错误负类)=预测正确正类/所有GT正类样本,理解成正类中召回了多少,查得多全。漏检率=1-Recall。
F1 SCORE:查全率和查准率的调和平均,1 / F 1 = 1 / 2 ∗ ( 1 / P + 1 / R )1/F_1 =1/2*(1/P+1/R),综合考虑两个指标,并且受小的影响比较大.
3. PR曲线
P和R是两个不同维度的衡量方法。有时这两个是矛盾的,比如只检测出了一个结果,且是正确的,那么P就是100%,但是R就会很低。如果我们把所有认为可能的结果都返回,那么P可能就会很低,R就很高

比如:
R高P低:所有汽车都被正确识别出来,但是很多卡车也被误认为是汽车
R低P高:识别出的飞机都是正确的,但还有很多飞机没被识别出来
PR曲线:就是选择不同的置信度阈值,得到的不同组合的P,R,以R为横坐标,P为纵坐标绘制而成。高度不均衡的数据集时,PR曲线能表现出更多的信息。
ROC曲线:就是选择不同的置信度阈值,以FPR=FP/(FP+FN),即错误预测正样本/所有预测负样本,为横坐标, TPR=TP/(TP+FN)=Recall为纵坐标。评估分类器的可信度

在ROC曲线中,以FPR为x轴,TPR为y轴,FPR指实际负样本中被错误预测为正样本的概率。TPR指实际正样本中被预测正确的概率。如下图:
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/086779a1af6a408ebda4244305257abc.png在这里插入图片描述

4. mAP的计算
4.1 AP (Average Precision),平均准确度
AP就是对PR曲线求积分
4.2 mAP
就是对不同类别的AP取平均。
4.3 mAP@0.5和mAP@0.5:0.95
mAP@0.5就是计算IOU=0.5的PR曲线与坐标轴所包围的面积
mAP@0.5:0.95就是在不同IoU(从0.5到0.95,步长0.05)(0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95)上的平均mAP。
〖AP〗small,〖AP〗medium,〖AP〗large对应area<〖32〗2, area<〖96〗^2, area>〖96〗^2目标大小
在这里插入图片描述


http://www.kler.cn/news/159950.html

相关文章:

  • MATLAB Simulink +STM32硬件在环 (HIL)实现例程测试
  • 前后端数据传输格式(上)
  • 「音视频处理」音频编码AAC详解,低码率提高音质?
  • 【Python】Python读Excel文件生成xml文件
  • 智能优化算法应用:基于梯度算法无线传感器网络(WSN)覆盖优化 - 附代码
  • Spring boot -- 学习HttpMessageConverter
  • 【LeetCode 0170】【哈希】两数之和(3) 数据结构设计
  • Unity 加载本地或网络图片并转为精灵(Sprite)的方法
  • java WebSocket带参数处理使用
  • 逆向爬虫进阶实战:突破反爬虫机制,实现数据抓取
  • UEC++ 探索虚幻5笔记(捡金币案例) day12
  • Webgis学习总结
  • 数据增强改进,实现检测目标copypaste,增加目标数据量,提升精度
  • 安全行业招聘信息汇总
  • 浅谈Elasticsearch安全和权限管理
  • Ubuntu下应用软件安装
  • c语言函数与指针
  • Redis 入门、基础。(五种基本类型使用场景)
  • 8、Broker进一步了解
  • OracleRac跨网段修改Public IP/VIP/Private IP/Scan IP
  • c语言经典题目
  • Distilling the Knowledge in a Neural Network(2015.5)(d补)
  • ElasticSearch篇---第三篇
  • Leetcode—383.赎金信【简单】
  • Spring Cloud Gateway与spring-cloud-circuitbreaker集成与理解
  • 【IC前端虚拟项目】git和svn项目托管平台的简单使用说明
  • LeetCode Hot100 200.岛屿数量
  • Hadoop学习笔记(HDP)-Part.03 资源规划
  • 【Pytorch使用自制数据集,Dataloader】
  • 7.上传project到服务器及拉取服务器project到本地、更新代码冲突解决