当前位置: 首页 > article >正文

matlab实践(十):贝塞尔曲线

1.贝塞尔曲线

贝塞尔曲线的原理是基于贝塞尔曲线的数学表达式和插值算法。

贝塞尔曲线的数学表达式可以通过控制点来定义。对于二次贝塞尔曲线,它由三个控制点P0、P1和P2组成,其中P0和P2是曲线的起点和终点,P1是曲线上的一个中间点。曲线上的每个点可以通过参数t在0到1之间的取值来计算,公式如下:

B(t) = (1-t)^2 * P0 + 2 * t * (1-t) * P1 + t^2 * P2

其中,B(t)表示曲线上的点,t表示参数值,(1-t)表示参数值的补数。

对于三次贝塞尔曲线,它由四个控制点P0、P1、P2和P3组成,其中P0和P3是曲线的起点和终点,P1和P2是曲线上的两个中间点。曲线上的每个点可以通过参数t在0到1之间的取值来计算,公式如下:

B(t) = (1-t)^3 * P0 + 3 * t * (1-t)^2 * P1 + 3 * t^2 * (1-t) * P2 +
t^3 * P3

贝塞尔曲线的插值算法可以通过递归的方式来计算。对于二次贝塞尔曲线,可以通过将两个二次贝塞尔曲线的控制点作为新的控制点,再次应用贝塞尔曲线的计算公式来得到更高阶的曲线。同样地,对于三次贝塞尔曲线,可以通过将两个三次贝塞尔曲线的控制点作为新的控制点,再次应用贝塞尔曲线的计算公式来得到更高阶的曲线。

贝塞尔曲线的优点是可以通过调整控制点的位置来改变曲线的形状,同时保持曲线的平滑性。这使得贝塞尔曲线在计算机图形学和计算机辅助设计中得到广泛应用,例如绘制曲线、路径动画、字体设计等。

2.代码

贝塞尔曲线本质上是一个递推公式。
p ( i , j ) = ( 1 − u ) × p ( i − 1 , j ) + u × p ( i − 1 , j − 1 ) \color{red}{p(i,j)=(1-u)\times p(i-1,j)+u\times p(i-1,j-1)} p(i,j)=(1u)×p(i1,j)+u×p(i1,j1)
上述递推公式中 , i 表示贝塞尔曲线的阶数 , j 表示贝塞尔曲线中的点个数 ( 包含起止点 + 控制点 ) , u 表示比例取值范围 0 ~ 1 ;

function points = computeCubicBezierCurve(controlPoints, numPoints)
    numControlPoints = size(controlPoints, 2);
    t = linspace(0, 1, numPoints); % 在0到1之间生成numPoints个等间距的参数值
    points = zeros(2, numPoints); % 存储曲线上的点坐标
    
    for i = 1:numPoints
        B = zeros(2, 1);
        for j = 1:numControlPoints
            B = B + nchoosek(numControlPoints-1, j-1) * t(i)^(j-1) * (1 - t(i))^(numControlPoints-j) * controlPoints(:, j);
        end
        points(:, i) = B; % 存储点坐标
    end
end

这是用彗星图画的

P=randi(100,2,60);
position=computeCubicBezierCurve(P,100);

X=position(1,:);
Y=position(2,:);
figure(1);
h=gca;
plot(P(1,:),P(2,:),'g.-','MarkerSize',40);
c={'起点'};
text(P(1,1),P(2,1),c,'HorizontalAlignment','left')
hold on

text(P(1,end),P(2,end),'终点','HorizontalAlignment','left')
hold on

mycomet(h,X,Y,0.8)

2.1总代码

clc;clear;
% fps = 40;
% myVideo = VideoWriter('test2.avi'); 
% myVideo.FrameRate = fps; 
% open(myVideo); 
% P0=[1,2];
% P1=[5,8];
% P2=[10,10];
% P=[P0;P1;P2];
% X=@(t)(1-t).^2.*P0(1)+2.*t.*(1-t)*P1(1)+t.^2*P2(1);
% Y=@(t)(1-t).^2.*P0(2)+2.*t.*(1-t)*P1(2)+t.^2*P2(2);
% x1=@(t)(1-t).*P0(1)+t.*P1(1);
% y1=@(t)(1-t).*P0(2)+t.*P1(2);
% x2=@(t)(1-t).*P1(1)+t.*P2(1);
% y2=@(t)(1-t).*P1(2)+t.*P2(2);
% t=0:0.01:1;
% X=X(t);
% Y=Y(t);
% x1=x1(t);
% y1=y1(t);
% x2=x2(t);
% y2=y2(t);
P=randi(100,2,6);
position=computeCubicBezierCurve(P,100);

X=position(1,:);
Y=position(2,:);
% figure(1);
% h=gca;
% plot(P(1,:),P(2,:),'g.-','MarkerSize',40);
% c={'起点'};
% text(P(1,1),P(2,1),c,'HorizontalAlignment','left')
% hold on
% 
% text(P(1,end),P(2,end),'终点','HorizontalAlignment','left')
% hold on
% 
% mycomet(h,X,Y,0.8)

% figure
% for k = 1:101
%     plot(P(1,:),P(2,:),'k.-','MarkerSize',40),hold on
%     plot(X(k),Y(k),'r.'),hold on
%     % plot(x1(k),y1(k),'g.'),hold on
%     % plot(x2(k),y2(k),'g.'),hold on
%     % plot([x2(k),x1(k)],[y2(k),y1(k)],'y-'),hold on
%     axis([min(P(1,:)),max(P(1,:)),min(P(2,:)),max(P(2,:))]),drawnow
%     frame = getframe(gcf);
%     im = frame2im(frame); 
%     writeVideo(myVideo,im); 
% end
% close(myVideo); 
plot(P(1,:),P(2,:),'g.-','MarkerSize',40),hold on
plot(X,Y)
hold on
p = plot(X(1),Y(1),'o','MarkerFaceColor','red');
hold off
axis manual
pic_num=1;
for k = 2:101
    p.XData = X(k);
    p.YData = Y(k);
    
    F=getframe(gcf);
    I=frame2im(F);
    [I,map]=rgb2ind(I,256);
    if pic_num==1
    imwrite(I,map,'test.gif','gif','Loopcount',inf,'DelayTime',0.2);
    elseif mod(pic_num,3)==1
    imwrite(I,map,'test.gif','gif','WriteMode','append','DelayTime',0.2);
    end
    pic_num = pic_num + 1;
 
    drawnow limitrate
end
function mycomet(varargin)
%COMET  Comet-like trajectory.
%   COMET(Y) displays an animated comet plot of the vector Y.
%   COMET(X,Y) displays an animated comet plot of vector Y vs. X.
%   COMET(X,Y,p) uses a comet of length p*length(Y).  Default is p = 0.10.
%
%   COMET(AX,...) plots into AX instead of GCA.
%
%   Example:
%       t = -pi:pi/200:pi;
%       comet(t,tan(sin(t))-sin(tan(t)))
%
%   See also COMET3.

%   Charles R. Denham, MathWorks, 1989.
%   Copyright 1984-2022 The MathWorks, Inc.

% Parse possible Axes input
nnn=0.05;

[ax,args,nargs] = axescheck(varargin{:});
if nargs < 1
    error(message('MATLAB:narginchk:notEnoughInputs'));
elseif nargs > 3
    error(message('MATLAB:narginchk:tooManyInputs'));
end

% Parse the rest of the inputs
bodyLengthProportion = 0.10;
if nargs < 2, x = args{1}; y = x; x = 1:length(y); end
if nargs == 2, [x,y] = deal(args{:}); end
if nargs == 3, [x,y,bodyLengthProportion] = deal(args{:}); end

if ~isscalar(bodyLengthProportion) || ~isreal(bodyLengthProportion) ||  bodyLengthProportion < 0 || bodyLengthProportion >= 1
    error(message('MATLAB:comet:InvalidP'));
end

x = matlab.graphics.chart.internal.datachk(x);
y = matlab.graphics.chart.internal.datachk(y);

if ~isvector(x) || ~isvector(y) || numel(x) ~= numel(y)
    error(message('MATLAB:comet:XYVectorsSameLength'));
end

ax = newplot(ax);

if ~strcmp(ax.NextPlot,'add')
    % If NextPlot is 'add', assume other objects are driving the limits.
    % Otherwise, set the limits so that the axes limits don't jump around
    % during animation.
    [minx,maxx] = minmax(x);
    [miny,maxy] = minmax(y);
    if ~isa(ax,'matlab.graphics.axis.GeographicAxes') && ~isa(ax,'map.graphics.axis.MapAxes')
        axis(ax,[minx maxx miny maxy])
    else
        % Latitudes are the first axis (x) and longitudes are the second
        % axis (y).
        latmin = minx;
        latmax = maxx;
        lonmin = miny;
        lonmax = maxy;
        
        % Buffer the limits for better display.
        bufferInPercent = 5;
        f = 1 + bufferInPercent / 100;
        half = f * (latmax - latmin)/2;
        latlim = [-half, half] + (latmin + latmax)/2;
        latlim(1) = max(latlim(1), -90);
        latlim(2) = min(latlim(2),  90);
        half = f * (lonmax - lonmin)/2;
        lonlim = [-half, half] + (lonmin + lonmax)/2;
        
        geolimits(ax,latlim,lonlim)
    end
end

totalLength = length(x);
bodyLength = round(bodyLengthProportion*totalLength);

head = line('Parent',ax,'SeriesIndex_I',0,'Marker','o','LineStyle','none', ...
            'XData',x(1),'YData',y(1),'Tag','head');
body = matlab.graphics.animation.AnimatedLine('SeriesIndex_I',0,...
    'Parent',ax,'MaximumNumPoints',max(1,bodyLength),'tag','body');
tail = matlab.graphics.animation.AnimatedLine('Parent',ax, 'SeriesIndex_I',0,...
    'LineStyle','-','MaximumNumPoints',1+totalLength,'tag','tail'); %Add 1 for any extra points

if isequal(body.Color,tail.Color) && isequal(body.LineStyle, tail.LineStyle)
    body.LineStyle='--';
end

if length(x) < 2000
    updateFcn = @()drawnow;
else
    updateFcn = @()drawnow('limitrate');
end

% Grow the body
for i = 1:bodyLength
    % Protect against deleted objects following the call to drawnow.
    if ~(isvalid(head) && isvalid(body))
        return
    end
    set(head,'xdata',x(i),'ydata',y(i));
    addpoints(body,x(i),y(i));
    updateFcn();
    pause(nnn)
end

% Add a drawnow to capture any events / callbacks
drawnow

% Initialize tail with first point. The next point will be added in the
% first iteration of the primary loop below, creating the first line
% segment of the tail.
addpoints(tail,x(1),y(1));

% Primary loop
for i = bodyLength+1:totalLength
    % Protect against deleted objects following the call to drawnow.
    if ~(isvalid(head) && isvalid(body) && isvalid(tail))
        return
    end
    set(head,'xdata',x(i),'ydata',y(i));
    addpoints(body,x(i),y(i));
    
    nextTailIndex = i-bodyLength+1;
    if(nextTailIndex<=totalLength)
        addpoints(tail,x(nextTailIndex),y(nextTailIndex));
    end
    updateFcn();
    pause(nnn)
end
drawnow

% Allow tail to continue on to the full length. The last point added to the 
% tail in the primary loop above was at index (totalLength-bodyLength+1), 
% so this loop starts at the following index. 
for i = totalLength-bodyLength+2:totalLength
    % Protect against deleted objects following the call to drawnow.
    if ~isvalid(tail)
        return
    end
    addpoints(tail,x(i),y(i));
    updateFcn();
    pause(nnn)
end
drawnow

end

function [minx,maxx] = minmax(x)
minx = min(x(isfinite(x)));
maxx = max(x(isfinite(x)));
if minx == maxx
    minx = maxx-1;
    maxx = maxx+1;
end
end
function points = computeCubicBezierCurve(controlPoints, numPoints)
    numControlPoints = size(controlPoints, 2);
    t = linspace(0, 1, numPoints); % 在0到1之间生成numPoints个等间距的参数值
    points = zeros(2, numPoints); % 存储曲线上的点坐标
    
    for i = 1:numPoints
        B = zeros(2, 1);
        for j = 1:numControlPoints
            B = B + nchoosek(numControlPoints-1, j-1) * t(i)^(j-1) * (1 - t(i))^(numControlPoints-j) * controlPoints(:, j);
        end
        points(:, i) = B; % 存储点坐标
    end
end

3.效果

三个点
在这里插入图片描述

四个点

在这里插入图片描述
五个点
在这里插入图片描述

六个点
在这里插入图片描述


http://www.kler.cn/a/159963.html

相关文章:

  • CSS回顾-长度单位汇总详解
  • 2023年MathorCup数学建模B题城市轨道交通列车时刻表优化问题解题全过程文档加程序
  • 844.比较含退格的字符串
  • UniApp 应用、页面与组件的生命周期详解
  • Linux 常用操作指令大揭秘(下)
  • 【云计算解决方案面试整理】1-2云计算基础概念及云计算技术原理
  • Linux搭建FTP并安装xrdp,实现Windows系统下利用FileZilla传输文件和远程桌面连接
  • Seo优化是什么,怎么进行seo优化
  • 服务器数据恢复—服务器重装系统导致逻辑卷发生改变的数据恢复案例
  • uni-app详解、开发步骤、案例代码
  • 使用Vue写一个日期选择器
  • 使用K-means把人群分类
  • MySql概述及其性能说明
  • 【PUSDN】centos查看日志文件内容,包含某个关键字的前后5行日志内容,centos查看日志的几种方法
  • 9个典型的交通行业AI应用
  • Java面试题(每天10题)-------连载(43)
  • kubeadm快速搭建k8s高可用集群
  • 目标检测常用评价指标
  • MATLAB Simulink +STM32硬件在环 (HIL)实现例程测试
  • 前后端数据传输格式(上)
  • 「音视频处理」音频编码AAC详解,低码率提高音质?
  • 【Python】Python读Excel文件生成xml文件
  • 智能优化算法应用:基于梯度算法无线传感器网络(WSN)覆盖优化 - 附代码
  • Spring boot -- 学习HttpMessageConverter
  • 【LeetCode 0170】【哈希】两数之和(3) 数据结构设计
  • Unity 加载本地或网络图片并转为精灵(Sprite)的方法