图片处理OpenCV IMDecode模式说明【生产问题处理】
OpenCV IMDecode模式说明【生产问题处理】
1 前言
今天售后同事反馈说客户使用我们的图片处理,将PNG图片处理为JPG图片之后,变为了白板。
- 我们图片处理使用的是openCV来进行处理
2 分析
2.1 图片是否损坏:非标准PNG头部
于是,马上写了一个demo尝试本地复现,结果复现概率是:必现。
package main
import (
"fmt"
"gocv.io/x/gocv"
_ "image/jpeg"
_ "image/png"
"io"
"os"
)
func main() {
params := []int{gocv.IMWriteJpegQuality, 1}
srcFile, err := os.Open("/Users/xxx/GolandProjects/xxx/image-encoder/demo/quality/3.png")
if err != nil {
fmt.Printf("%v", err)
return
}
defer srcFile.Close()
imageBuf, err := io.ReadAll(srcFile)
if err != nil {
fmt.Printf("%v", err)
return
}
mat, err := gocv.IMDecode(imageBuf, gocv.IMReadUnchanged)
if err != nil {
fmt.Printf("%v", err)
return
}
buf, err := gocv.IMEncodeWithParams(gocv.JPEGFileExt, mat, params)
//buf, err := gocv.IMEncodeWithParams(gocv.JPEGFileExt, mat, params)
if err != nil {
fmt.Printf("%v", err)
return
}
os.WriteFile("/Users/xxx/GolandProjects/xxx/image-encoder/demo/quality/33.jpg", buf.GetBytes(), os.ModePerm)
if err != nil {
fmt.Printf("%v", err)
return
}
println("DONE.....")
}
接着尝试将我本地其他的PNG图片转换为JPG,发现可以转换成功。表示这个代码是可以将PNG转换为JPG的。
于是,开始排查是否是客户图片有破损,比如图片的文件头已经损坏,导致它不是一个标准的PNG图片。
通过查阅资料后发现PNG的头部为
89 50 4E 47 0D 0A 1A 0A
package main
import (
"encoding/hex"
"fmt"
"os"
)
func main() {
filePath := "/Users/xsky/GolandProjects/xxx/image-encoder/demo/quality/11.png" // 替换为你的 PNG 图片文件路径
file, err := os.Open(filePath)
if err != nil {
fmt.Println("Error opening file:", err)
return
}
defer file.Close()
header := make([]byte, 8)
_, err = file.Read(header)
if err != nil {
fmt.Println("Error reading file:", err)
return
}
fmt.Println("PNG 文件头的16进制信息:")
//89504e470d0a1a0a
//89504e470d0a1a0a
fmt.Println(hex.EncodeToString(header))
}
最终验证发现,客户的PNG图片与我本地PNG图片一致,文件头都是符合PNG格式的。
2.2 Alpha图像通道问题(shooting)
接着想着客户图像是灰白色的,而我之前验证的本地图片为彩色,加上我自己gocv处理图片的参数选择的是
gocv.IMReadUnchanged
。点进去查看源码,发现还有其他的参数,于是尝试替换其他参数。
//我之前代码的用法
mat, err := gocv.IMDecode(imageBuf, gocv.IMReadUnchanged)
// IMReadUnchanged return the loaded image as is (with alpha channel,
//otherwise it gets cropped).
IMReadUnchanged IMReadFlag = -1 # 处理带有Alpha参数的图像
// IMReadColor always converts image to the 3 channel BGR color image.
IMReadColor IMReadFlag = 1 # 将图片转换为BGR三色通道
// IMReadAnyColor the image is read in any possible color format.
IMReadAnyColor IMReadFlag = 4 # 根据图像自动识别任何可能的格式
...
知道这个参数之后,我将gocv.IMDecode(imageBuf, gocv.IMReadUnchanged)
中的IMReadUnchanged
改为IMReadAnyColor
,最后验证,成功处理客户图片。
目前可以知道,我的图像处理参数选择有问题。于是开始查这几种参数有什么区别。其实点进去看源码就可以知道这几种参数的区别。
这个时候如果对图像处理不熟悉的朋友可能会问,
Alpha通道
是什么意思,其实大家可以简单的理解为和图像的透明度
有关。
为了验证这个结论是否正确,我尝试读取客户的PNG和我本地的彩色PNG的颜色Model是否不同:
//color.RGBAModel # 我自己的图像
//color.Gray16Model # 客户的图像
至此,猜想成立,可以知道是我图像的处理颜色的参数选择有误。
3 拓展:图像color.Model
色彩模型(RGB,RGBA,CMYK灰度)
matplotlib中的色彩定义主要用到了RGB、RGBA、CMYK、灰色四种模型。
- 这里我主要介绍RGBA模型
对这块感兴趣的朋友可以去看这边文章:https://blog.csdn.net/mighty13/article/details/113616772
3.1 color.RGBAModel:三色+Alpha
带有alpha[RGBA 表示传统的32位预处理 Alpha 色,每个颜色都有8位,分别表示红色,绿色,蓝色和阿尔法。 ]
type RGBA struct {
R, G, B, A uint8
}
3.2 color.RGBA64Model:64位表示三色+Alpha的值
带有alpha:64位数来表示每个通道的值
type RGBA64 struct {
R, G, B, A uint16
}
3.3 color.NRGBAModel:其他颜色不预乘Alpha的值
NRGBA 表示非 Alpha 预乘32位颜色(非 alpha 预乘表示在进行颜色合成时,颜色值不会提前乘以 alpha 通道的值)
- 预乘:什么是预乘?假设一个像素点,用RGBA四个分量来表示,记做(R,G,B,A),那预乘后的像素就是(RA,GA,B*A, A),这里A的取值范围是[0,1]。所以,预乘就是每个颜色分量都与该像素的alpha分量预先相乘。可以发现,对于一个没有透明度,或者说透明度为1的像素来说,预乘不预乘结果都是一样的。
- NRGBA代表一个没有32位透明度加乘的颜色。每个红,绿,蓝和透明度都是8bit的数值
type NRGBA struct {
R, G, B, A uint8
}
3.4 color.NRGBA64:非预乘Alpha,其他颜色用64位表示
NRGBA64 表示非 alpha 预乘 64 位颜色,每个红色,绿色,蓝色和 alpha 有 16 位
- NRGBA64代表无透明度加乘的64-bit的颜色,它的每个红,绿,蓝,和透明度都是个16bit的数值。
type NRGBA struct {
R, G, B, A uint16
}
3.5 color.AlphaModel:代表一个8-bit的透明度
type Alpha struct {
A uint8
}
3.6 color.Alpha16Model:代表一个16位的透明度
type Alpha struct {
A uint16
}
3.7 color.GrayModel:灰度通道,黑白图像
只有一个灰度通道,通常用于表示黑白图像【当你需要读取只带有灰度通道的图像时,你应该使用该标志来读取图像。】【也是由RGB组成,不过由于是单通道,因此呈现灰度】
3.8 color.Gray16Model:16位整数表示灰度通道值
16位整数表示灰度通道的值,通常用于表示黑白
参考:
- https://blog.csdn.net/zxcasd11/article/details/109446056
- https://blog.csdn.net/u013943420/article/details/76855416